1,287 research outputs found

    Modeling of anisotropic electromagnetic reflection from sea ice

    Get PDF
    Journal ArticleThe contribution of brine layers to observed reflective anisotropy of sea ice at 100 MHz is quantitatively assessed, and a theoretical explanation for observed reflective anisotropy is proposed in terms of anisotropic electric flux penetration into the brine layers. The sea ice is assumed to be a stratified dielectric consisting of pure ice containing ellipsoidal conducting inclusions (brine layers) uniformly aligned with their long axes perpendicular to the preferred crystallographic c axis direction. The asymmetrical geometry of the brine layers is shown to produce an anisotropy in the complex dielectric constant of sea ice

    Sea ice studies in the Weddell Sea aboard USCGC Polar Sea

    Get PDF
    Journal ArticleOur purpose was to investigate several of the characteristics of Weddell Sea pack ice that may affect the relative roles of dynamics and thermodynamics of pack ice development in this region. The total pack ice production and the movement of pack ice from its source area in the Weddell Sea is particularly important in modifying ocean-atmosphere exchange processes. These modifications affect both climate and water mass development in and beyond the Weddell Sea embayment. The pack ice area affected by Weddell Sea processes is 8-10 million square kilometers (Ackley 1979a), about one-third of the total around Antarctica at maximum extent

    Short-term leprosy forecasting from an expert opinion survey.

    Get PDF
    We conducted an expert survey of leprosy (Hansen's Disease) and neglected tropical disease experts in February 2016. Experts were asked to forecast the next year of reported cases for the world, for the top three countries, and for selected states and territories of India. A total of 103 respondents answered at least one forecasting question. We elicited lower and upper confidence bounds. Comparing these results to regression and exponential smoothing, we found no evidence that any forecasting method outperformed the others. We found evidence that experts who believed it was more likely to achieve global interruption of transmission goals and disability reduction goals had higher error scores for India and Indonesia, but lower for Brazil. Even for a disease whose epidemiology changes on a slow time scale, forecasting exercises such as we conducted are simple and practical. We believe they can be used on a routine basis in public health

    Comparing Probabilistic Models for Melodic Sequences

    Get PDF
    Modelling the real world complexity of music is a challenge for machine learning. We address the task of modeling melodic sequences from the same music genre. We perform a comparative analysis of two probabilistic models; a Dirichlet Variable Length Markov Model (Dirichlet-VMM) and a Time Convolutional Restricted Boltzmann Machine (TC-RBM). We show that the TC-RBM learns descriptive music features, such as underlying chords and typical melody transitions and dynamics. We assess the models for future prediction and compare their performance to a VMM, which is the current state of the art in melody generation. We show that both models perform significantly better than the VMM, with the Dirichlet-VMM marginally outperforming the TC-RBM. Finally, we evaluate the short order statistics of the models, using the Kullback-Leibler divergence between test sequences and model samples, and show that our proposed methods match the statistics of the music genre significantly better than the VMM.Comment: in Proceedings of the ECML-PKDD 2011. Lecture Notes in Computer Science, vol. 6913, pp. 289-304. Springer (2011

    Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data

    Get PDF
    We present a search for gravitational waves from 222 pulsars with rotation frequencies ≳10 Hz. We use advanced LIGO data from its first and second observing runs spanning 2015–2017, which provides the highest-sensitivity gravitational-wave data so far obtained. In this search we target emission from both the l = m = 2 mass quadrupole mode, with a frequency at twice that of the pulsar's rotation, and the l = 2, m = 1 mode, with a frequency at the pulsar rotation frequency. The search finds no evidence for gravitational-wave emission from any pulsar at either frequency. For the l = m = 2 mode search, we provide updated upper limits on the gravitational-wave amplitude, mass quadrupole moment, and fiducial ellipticity for 167 pulsars, and the first such limits for a further 55. For 20 young pulsars these results give limits that are below those inferred from the pulsars' spin-down. For the Crab and Vela pulsars our results constrain gravitational-wave emission to account for less than 0.017% and 0.18% of the spin-down luminosity, respectively. For the recycled millisecond pulsar J0711−6830 our limits are only a factor of 1.3 above the spin-down limit, assuming the canonical value of 1038 kg m2 for the star's moment of inertia, and imply a gravitational-wave-derived upper limit on the star's ellipticity of 1.2 × 10−8. We also place new limits on the emission amplitude at the rotation frequency of the pulsars

    Evaluation of selected chemical processes for production of low-cost silicon phase 2. silicon material task, low-cost silicon solar array project

    Get PDF
    Progress from October 1, 1977, through December 31, 1977, is reported in the design of the 50 MT/year experimental facility for the preparation of high purity silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles to form a free flowing granular product

    Sea ice <i>p</i>CO<sub>2</sub> dynamics and air-ice CO<sub>2</sub> fluxes during the Sea Ice Mass Balance in the Antarctic (SIMBA) experiment - Bellingshausen Sea, Antarctica

    Get PDF
    Temporal evolution of pCO2 profiles in sea ice in the Bellingshausen Sea, Antarctica, in October 2007 shows physical and thermodynamic processes controls the CO2 system in the ice. During the survey, cyclical warming and cooling strongly influenced the physical, chemical, and thermodynamic properties of the ice cover. Two sampling sites with contrasting characteristics of ice and snow thickness were sampled: one had little snow accumulation (from 8 to 25 cm) and larger temperature and salinity variations than the second site, where the snow cover was up to 38 cm thick and therefore better insulated the underlying sea ice. We show that each cooling/warming event was associated with an increase/decrease in the brine salinity, total alkalinity (TA), total dissolved inorganic carbon (TCO2), and in situ brine and bulk ice CO2 partial pressures (pCO2). Thicker snow covers reduced the amplitude of these changes: snow cover influences the sea ice carbonate system by modulating the temperature and therefore the salinity of the sea ice cover. Results indicate that pCO2 was undersaturated with respect to the atmosphere both in the in situ bulk ice (from 10 to 193 µatm) and brine (from 65 to 293 µatm), causing the sea ice to act as a sink for atmospheric CO2 (up to 2.9 mmol m-2 d-1), despite supersaturation of the underlying seawater (up to 462 µatm)

    All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data

    Get PDF
    We report on an all-sky search for continuous gravitational waves in the frequency band 20–2000 Hz and with a frequency time derivative in the range of [−1.0,+0.1]×10−8  Hz/s. Such a signal could be produced by a nearby, spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the LIGO data from the first six months of Advanced LIGO’s and Advanced Virgo’s third observational run, O3. No periodic gravitational wave signals are observed, and 95% confidence-level (C.L.) frequentist upper limits are placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are ∼1.7×10−25 near 200 Hz. For a circularly polarized source (most favorable orientation), the lowest upper limits are ∼6.3×10−26. These strict frequentist upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest 95% C.L. upper limits on the strain amplitude are ∼1.4×10−25. These upper limits improve upon our previously published all-sky results, with the greatest improvement (factor of ∼2) seen at higher frequencies, in part because quantum squeezing has dramatically improved the detector noise level relative to the second observational run, O2. These limits are the most constraining to date over most of the parameter space searched

    Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo’s first three observing runs

    Get PDF
    We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called pystoch on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found evidence of gravitational-wave signals. Hence we derive 95% confidence-level upper limit sky maps on the gravitational-wave energy flux from broadband point sources, ranging from Fα,
    • …
    corecore