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ABSTRACT

Progress from October 1, 1977, through December 31, 1977, is

reported in the design of the 50 MT/year experimental facility for the

preparation of high-purity silicon by the zinc vapor reduction of silicon

tetrachloride in a fluidized bed of seed particles to form a free-flowing

granular product.

Progress was made in all aspects of the design of the 50 MT/year

experimental facility. Design of the silicon tetrachloride purification

facility by Pace Engineers, Inc., of Houston, Texas, is nearing completion

and is expected to be concluded during January, 1978. Progress was made in

the design of the Zinc/ZnC12 by-product condenser, and in the more conven-

tional items of the facility by Raphael Katzen Associates, Internatioi.al ,

Inc., of Cincinnati, Ohio. Progress was also made at Battelle in the



C\

non-conventional items, the fluidized bed, zinc feed system, zinc vaporizer,

and electrolytic cell. Design decisions have been made which leave

unresolved questions only in the case of the zinc pump, zinc vaporizer,

and electrolytic cell. These are expected to be resolved early in the

next quarter, so that the design for cost estimation purposes can be

concluded in February.

Calculations and experimental work have defined the limitations

of a graphite tray-type vaporizer for zinc, and the alternative of directly

coupling induction heat to zinc is being explored.

Problems with the hot-wall graphite-lined electrolytic cell have

led to adoption of cold-wall design (contained insulation) for the experi-

mental facility; however, it is concluded that most of the problems stemmed

from excessive moisture in the ZnC1 2 used to form the synthetic ZnC12/KC1

mixtures, and that these would be greatly reduced with the anhydrous by-

product of the experimental facility.

A total of 1.5 kg of quality-evaluation material has been prepared

with semiconductor-grade seed during this report period and shipped to JPL.

The concept of chlorination of residual silicon deposit on the fluidized-

bed reactor wall was demonstrated as was the semicontinuous withdrawal of

product in the course of preparing this material.

Progress was made in experime,.tal evaluation of design options for

the liquid zinc displacement feed device and the zinc vaporizer.

Experiments were initiated in a full-scale mock-up of the fluidized-

bed unit to observe the effects of pa-ticle size, bed height, and relative

flow through the gas distributor on fluidization, and on mixing of the two

gas streams.

Materials compatibility tests showed that etainleas steel was not

attacked at 500 C by zinc chloride, but that zinc vapor penetrated the

pores of ATJ graphite to attack the surrounding stainless steel at 850 C,

thus confirming the necessity of rendering the graphite impervious for that

type of construction.
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INTRODUCTION

Thia is the Ninth quarterly Progress Report covering the work

at Dattelle's Columbus Laboratories for DOE-JPL on the Evaluation of

Selected Processes for the Production of Low-Cost Silicon.

This work is currently in the second phase, that of designing a

50 MT/year experimental facility for the preparation of silicon by the zinc

vapor reduction of silicon tetrachloride on a fluidized bed of -eed particles.

The Fifth/Sixth Quarterly Report of this series (ERDA/JPL 954339-

77/5,6, April 29, 1977) summarizes the prior work and plans for the current

program through design (Phase'II), construction (Phase III), shakedown

(Phase IV), and experimental operation (Phase V) of the experimental facility.

The target date for completion of the design is February 15, 1978.

In writing this report, it is assumed that the reader will have

the background of the Fifth/Sixth, Seventh, and Eighth Quarterly Reports.

Accordingly, progress and status changes since the Eighth Quarterly Report

are reported with a minimum of background, in two sections, Design of the

Experimental Facility, and Experimental Support Programs.

DESIGN OF THE EXPERIMENTAL FACILITY

The basic process flow diagram and mass and energy flow sheets for

the 50 MT/year experimental facility were presented as Figure 1 and Tables 1

and 2 of the Eighth Quarterly Report (ERDA/JPL 965339-77%8, October 20, 1977).

Included also as Figure 2 of that report was a preliminary plant layout,

drawn to give assurance that the experimental facility would fit into an

available building.

During the quarter covered by this report, intensive activity has

been maintained in the area of plant design In cooperation with Raphael Katzen

Associates, International, Inc. (RKAII), of Cincinnati, Ohio, and with Pace

Engineers, Inc. (Pace), of Houston, Texas. Pace has the task of designing

3



the silicon tetrachloride purification system, while RKAII is handling the

design of the more conventional items other than SiC14 purification, and

cooperating with Battelle's Columbus Laboratories (BCL) on the less conven-

tional items. The BCL design responsibilities include the less conventional

items and oversight of the entire design effort. Figure 1 shows the current

design schedule. This schedule gives a fairly complete picture of the

progress of the design effort. However, it should be noted that in the

course of interaction with RKAII, changes in design have been proposed which

may alter the function and therefore the identity of certain items piven in

Figure 1. As these changes are tentativ_, it is believed desirable at this

point to retain the item identity given previously In this figure (as

Figure 7 of the Eighth Quarterly Repvrt). It will be note4 that Equipment

Item C2 (SiC14 Reserve) has been deleted and C4 (SiC14 Emergency Storage)

has been odded.

Because of the state of flux of the design of the experimental

facility, it is not practical to recount a full description of the design

as of a given date (e.g., at end of quarter, December 31, 1977). Rather, a

general statement of progress will be mada, coupled with the presentation of

selected figures which will be representative of that progress, but are not

expected to be understood in detail by other than those who are intimately

involved. Such detailed presentation will be reserved for the final report.

RKAII Progress

Figure 2 is a preliminary flow diagram of the reaction section of

the facility, drawn up for critique at a meeting on December 15, 1977, at BCL

The major additions, in principle, to earlier flow diagrams is the provision

of a heat exchanger system for the zinc/ZnC1 2 condenser, A10, involving a

high-temperature heat exchange fluid "Therminol" whose heat content is

finally dissipated by cooling in Units A17 and A18 of the diagram. A

significant change made as the result f subsequent discussions has been the

combination of A4 with A4' and A5 with A5' into single units of 50 MT/year

capacity to feed both of the 25 MT/year fluidized-bed system branches.
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t.è iiiINrIW



Fri
Design/'.nstrumentatton
A4 - Design (7.n Hopper) 6

Instrumentation
F

c.

AS - Design (Zn Moltes f

Instrumentation

.18 - Design	 (Si	 Cooler)

Instrumentation

A9 - Design	 (S1 Storage)

Instrumentation j—!

A10-AIOa - Design (WI&C

Instrumentatia

All-Al2 - Design (Zn/tmCl A	 t

eInstrumntati

A13 - Design MCI 4  Recfc

Instrumentation

A14 - Design (Heat Exchsr
nit 1.	 11

Instrumentation
1111 l	 )

Hl - Design Me	 y8i nit	 1.	 )

Instrumentatton
nits	 )

B3 - Design	 (ZnC1 2 Str
nits	 )

Instrumentation 111111	 )

84 - Design (ZnC1 2 Str
niti	 )

Instrumentation
nitl	 )

D7 - Design	 (SIC1 4 Was
11111	 1)

Instrumentation
nIti	 )

F3 -	 Ik• sign	 (SiC1 4 Co

Instrumentatior
11111

* • - completed item; A

1	 (	 nit!	 )

( Ili t1 )
( f i n ll

-4	 (Initial)
(I	 ill 11)

-A	 ( nit1 1)
A— (111111)

-4	 ( nit! )
(f 11111)

-f!	 ( nit! )
A-- (111111)

( nitl )
(itn0)

-A	 ( niti )
(f in 11)

-tl	 ( nits 1)
(1111,1)

,.	 ( nits 1)
(f in 11)

k-.

I^Lll ) (II[II)

O

L^	 0.1	 11/11/77

Gene a

Flow Diagram
Mau Balance
F.nergv Btilc+ttre
Preliminary Siting
Preliminary Instrumentation
Conceptual Equipment Design
General Engineering Choice
General Engineering Contract
Distillation Fngineering Choice
Distillation Engineering Contract
Facility Site Sketch
ZnC1 2 Cycle Selection
Safety Reviews
Site Selection

Prelitr.anary
Inteilm
Final

Meeting Schedule
GenerAl Engineering Firm
Distillation Engineering Firm

Prelimltaary Design
final Design
Cost Estimdte
Process Coat Eatimates
Waste Disposal Contacts

C-1 Groff

A2 - Design (TET Boiler)

Instrumentation

Al - Design (Reactor)

Instrumentation

A6 - Design (Zn Pump)

Instrumentation

A7 - Design (7.n Vaporizer)

Instrumentation

82 - Design (Electrolytic Cell)

Inst rumentdt ion

Specifications on Cl, F4

Pace Engineering, Inc.

C3 - Design and Instr. (SiC1 4 Purif.)

Raphael Katzen Associates

Identification of off-Shelf Items;
Al (Pure SiC1 4 Storage)
":1 (SiC1 4 Bulk Storage)
C4 (S1C1 4 Emergency Storage)
D1 (StC14 Waste Hold)
D2 (Ca(OH)2 Slurry)
D4 (Waste Storage)
ES (Caugttc/Hypochlorite
E6 (Reactor/Storage)
E7 (Caustic Coo.er (Refrig.))

JUI.-

	

IIIN SEP	 oCT	 NOV I DEC	 IAN	 FFB

•

- ^	 ( nit I. 1)

^	 1 ^

FIGURE 1. DESIGN SCHEDULE:, EXPERIMF14TAL FACILITY
(1/20/78)	 TAL FAC)

S

-	 -^



JAR n•
^n

per)

,n

.tan

'n

,ls

,n

,rage)

to ^p

Zn/Zn(

tntatic

:n/ZDC' 1

nisi 1

Recyt
_.

.on

Exchar.
nlrl )

- (f t.	 +
ion nit 1 )
'olysir - (fine

(fit
in

niti )

Stripy
(fine

niti:l)
—

n'

(fi nnto
nit 11 )

St
(fit

)

— (fill
M

)
Was

(fill

njin

n

)
(fill,

(fine

1,-^^nit l 1)
(fin'

1

j	

+

)	 I

I

M

I	 f

Ir

e	 I

i
r

if
t

^	
I

r	 t

I	 ^

H

Jtn.-
JUN SEF OCT WY DEC JAM ►LN

Design/ I not russnt Alt ton
A4 - Design (Zn Hopper)

( nitia l)
( f i 1)

nitl
Iastrusentvion

(

1

)

M

q

I)

AS - Design U n Molten Storage) - •	 ( nit! )

Inst runwiltat ion
(

♦ -
nitis )

(fin 1)

AS - Daasign	 (Si Cooler)
i	 (
♦ -

nitl )
Mn 1)

Instrumentation
( nitis )

(fin 1)

I

nitia
A9 - Design (31 Storage) — (

^-
)
(Dill 1)

Instrumentation
--A	 (

♦
nitia )

(fin 1)

A10-AlOa - Design (Zn/ZnC1 2 Condenser)
—6 ( niti.r )

(fi 1)

Instrumentation
( nitla )

(fin 1)

nit is
All-Al2 - Design (Zn/ZnC12 Stripper)

-- ( )
 1)

nitia
Instrusxentation

( )
(f!n 1	 )

nitts
A13 - Design	 (S1C1 4 Recycle Conden.)

(
♦

)
(fin I)

Instrumentation
- ♦ 	 (

♦ -
nit in )

(fin 1)

nit/a
A14 - Design	 (Heat Exchanger)

♦ 	 ( )
(f trli l;

nitlw
-Instrumentation - (

♦
 )

(Inn 1;

sl - Design (Electrolysis Feed)
♦ (nitia )

(fin II
nitia

Instrumentation
( )

(fin 1:

nitia
--BJ - Design (ZnC1 2 Stripper)

(
tr—

)
(fin V

Instrumentation
( nitl++ )

([in 1.

nit to
B4 -	 1A• nign	 (ZnC1 2 Stripper)

- - A	 (
R--

)
(fin 1

Instrumentation , -- 1	 ( nitia )
(fin 1

nicl
D3 - Design (SiC1 4 Waste Process)

( )
(fin 1

nit iw
Instrumentation

— ♦ 	 ( )
(fin 1

nit 1.+
73 - Design (S1C1 4 Condenser)

( )
(fill I

nit la
Instrumentation

---- - -- ( )
(fin il.

a ♦ - completed item; % - target Itum.

TAL FACILITY



o.:

I

M

I `^

h- . 7A

Iltl^

L- T

GnN+a

I P.

', a
+t.c^

.,^snr+.^ v_a

ra 'a

T,

j !,

VIES

7	 ,

1 l	 ^ ^+'	 o`aooucr
-"^	

[
[	 o	 c..'aa	 f

JL

LJ	 C A-29	 ^	 r

•aau..u.•roa

A 	 °a`ou.
w..ac •I

FIGURE 2. PRELIMINARY FLOW DIAGRAM, REACTOR SECTION
(RKAII DRAWING NO. WIi 249-02)

u

r.	 t
4,r-.



11	 ^j	 ;'I	 lI
11	 i t	 I	 it

	

1	 1
1

p	 4	 i 	 1	 a	 4	 C

^FIF
II	 ll

Sal

II	 ^i

!	 p	 A.11

1	 1^

I
I	 11

A li	 I1
"Acres	

aci, s.+, elcaf	 1	 l
u Hcl"a.a

11	 I

I	 It	 —

1 1	 I	 1W	 11 ►►(^ •1'I^ —L^	

i^ ^^

I	 I

Y^Wt fR• R.+

L^'11^rs Tv..

f TfaA

tie ♦ A I--

rfYa.M^YOA.

—	 -o.o Al •u.N

A TI
ItoO^^c
con.l•

ON

RAPHAEL KATZEN ASSOCIATES
IN TRAWATIONAL INC

COIIMII +w4 ibOwafllf 	 LU NNA+1. OHM USA
..'1[..E l. lEelSF . ei _wsrn r[

---	 ILnM.YfIT
ii

1.—. — okoo.,cr
ao^..lL,ra..

N	 /RAIN

MAIN
I

1

IL

c _^ ^	 l; l• ^ i^	 I
4c-.nou.r.

1
a

1	 .., a.w.oa

'	 fe PU-p

Aaau..v^Aroe

ORIGINAL' PAGM M
OF POOR QUALITY

PRELIMINARY



Similarly, the electrolysis feed tanks, B1 and Bl', have since been com-

bined, so that in essence, the six 5000-ampere electrolytic cells can be

fed with the product of either of the zinc/ZnCl2 condensers, A10 and A10',

and can be used in any combination to recycle zinc to either of the 25 MT/

year Lranches.

i	
Zinc/ZnC12 Condenser

The zinc/ZnC1 2 condensers, A10 and A10', are designed to be of the

wet-wall type with ZnC1 2 as the recirculated fluid. This design principle

is warranted by the nature of-the condensate, containing silicon "dust",

which, if allowed to impinge on a dry surface, would tend toward plugging,

depending upon particle size, shape, and associated entrainment character-

istics. It should be noted that as the temperature of the by-product gas

is decreased and the zinc and ZnC12 condense out, the gas velocity for

entrainment of silicon "dust" is ultimately decreased by a factor of 11.

Figure 3 shows a preliminary design of the wetted-wall zinc/ZnC12

condenser. A description (preliminary) of its operation follows:*

The cooling of the reactor off-gases can be divided into

three segments -- condensation of the zinc, condensation

of the zinc chloride, and gas cooling. Zinc condensation

occurs essentially between 1475 F (802 C) and 1275 F

(690 C), zinc chloride condensation from 1275 F (690 C)

to about 1050 F (565 C), and the remainder of the cooling

is essentially gas cooling. The condensation of zinc

and zinc chloride can be efficiently handled in the A10

condenser. However, cn,: gas cooling portion, below 1050 F

(565 C), should be carried out in exchangers with a high

surface per equipment volume in order to avoid unduly

large equipment.

* Extracted from RKAII Communication, 14H 249, December 2, 1977.
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In the proposed configuration of Figure 3, reactor off-

gas enters the bottom of the condenser and travels

upward through the outer holes. If necessary, a

two-pass arrangement can be used with the gas flowing

back down through a second bank of holes to leave the

exchanger at the bottom head. Zinc chloride is pumped

to the top head and allowed to overflow the collars

on each tube and down the tube walls. The zinc chloride

circulation rate required to completely wet the tube

wall is approximately 0.4 gpm per tube. This will

insure that there can be no build-up of molten zinc

and silicon dust on the tube walls and also allows the

zinc chloride to serve as the.cooling medium for the

reactor off-gas. Zinc chloride will be supplied to

the tubes at a temperature of 800 F (427 C), slightly

above the melting point of zinc. Net  condensate leaves

the exchanger by overflow. The heat is removed from

the zinc chloride by exchanging it against Therminol

in the central portion of the exchanger. The zinc

chloride circulating pump takes suction below the

liquid level in the bottom of the exchanger and supplies

zinc chloride to the three center tubes. The Therminol

enters the top of the exchanger at approximately 700 F

(371 C) and flows countercurrent to the rising zinc

chloride. The Therminol leaving the bottom of the

exchanger at about 730 F (388 C) is cooled in a con-

ventional air- or water-cooled exchanger prior to being

circulated back to the top of the unit.

Below a temperature of approximately 1050 F (565 C),

the controlling heat transfer resistance is that of

the gas film and the overall heat transfer coefficient

is very low. For this reason, it is recommended that

9	 ORIGINAL PAGE Gi°
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cooling below 1050 F (565 C) be carried out in a

shell and tube or block type exchanger with a high

`. •j	 specific surface.

Preliminary calculations indicate that the zinc

condensation can be carried out in three 1-1/2-inch-

ID tubes with a length of approximately 5 feet. The

bulk of the zinc chloride condensation can be carried

out in a length of approximately 3 feet. Difficulty

of heat transfer below 1100 F (593 C) is shown by

the fact that it would require over 13 feet of the

swne tube to cool from the 1100 F (593 C) down to

932 F (500 C).

Refinement of the design of A10 and associated equipment is in progress.

Waste Treatment Section

On the basis of experieu.:e with similar systems, RKAII recommends

that the SiC14 waste disposal system (D1-D4) and the chlorine-to-hypochlorite

- conversion system (E5-E7) be integrated with each other and with a scrubber

1+„ system for Nandling vent products and the building air in case of leaks or

spills.	 This has the advantage of using a single reactant, NaOH, for the

two operations.	 The use of Ca(OH) 2 for the SiC14 neutralization [to SiO2

(hydrated)] was based on experience at Battelle and elsewhere indicating chat

? ` plugging of the SiC14 vapor inlet in such systems is a problem with NaOH as

the neutralizing solution.	 According to RKAII, this problem should be

minimized by using an eductor arrangement through which relatively large

volumes of NaOH solution are circulated. 	 In recognition that the problem

might be greatly reduced but not completely eliminated, spare eductors are

provided for use when the constricted ones are being reconditioned. 	 The
q

construction is such as to simplify that operation.	 To confirm the feasi-

bility of such an arrangement, a small eductor of the recommended design

has been ordered for evaluation in the experimental support program.

10



A preliminary flow diagram of the waste treatment section is

given in Figure 4.

A description of the proposed operation of the waste treatment

section follows:*

Primary Silicon Tetrachloride Scrubber. The function

of the primary silicon tetrachloride scrubber is to

neutralize any waste streams that contain silicon

tetrachloride. The neutralization of silicon tetra-

chloride vapors will be accomplished in Eductor D6.

Since the eductor could ultimately become blocked, a

spare is provided for this item. The liquid waste

streams will be neutralized in the SiC14 scrubber

tank D3. Neutralization of the silicon tetrachloride

will be accomplished by using a sodium hydroxide solu-

tion which is maintained at a minimu^ of 2 percent

sodium hydroxide (pH of 13.7). To remove the heat of

neutralization, the recycle stream, which is used in

the eductor., is cooled in a recycle cooler D5. Both

the recycle cooler and the eductor have been sized to

handle the peak silicon tetrachloride waste condition

which would occur during the chlorination of the

silicon reactor.

The net discharge from the primary silicon tetrachloride

scrubber is discharged to the sewer. The net flow from

the scrubber during normal operation (92 percent of

operating time) is approximately 0.3 gpm. This amount

should cause no environmental problems, especially

since it will be diluted heavily (10 to 1) with cooling

water coming from the recycle. cooler. The gases from

the primary scrubber are vented to the final vent gas

scrubber.

* Extracted from RKAII Communication WH 249, December 2, 1977.
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Final Vent Gas Scrubber and Hypochlorite/Caustic Cooler.

Chlorine from the electrolysis cells will be neutralized

to hypochlorite in eductor E8. Stnce there is a trace

amount of silicon tetrachloride in the chlorine stream

which could lead to constriction, a spare has been

provided for this eductor. Essentially all of the

chlorine will react by the time it enters the vent

scrubber E7. However, since there is a possibility of

unroacted chlorine being discharged to the atmosphere,

the scrubber consists of a two-loop system. The primary

loop consists of recycling sodium hydroxide solution

over five perforated trays. Air coming from area vents,

outside air, and the vent from the primary SiClp scrubber

cools the reaction solution. The net hypochlorite solu-

tion is discharged from this primary loop into the

hypochlorite storage tank E5. The secondary recircula-

tion loop consists of two perforated trays. The net

makeup of caustic solation, from caustic storage tank

E6, is fed onto the top tray of this secondary loop.

The net overflow from the secondary loop overflows into

the primary loop, supplying the neceasary caustic to

neutralize the chlorine from the electrolysis cells.

A demister is used to separate any entrained caustic

solution. An ID fan is used to discharge the scrubbed

air and inert gases to the atmosphere.

During the conference at BCL on December 15, 1977, refinements were

suggested in the design which will be finalized by RKAII.

Pace Progress

Pace has been assigned the task of designing a silicon tetrachloride

purification system to convert the commercially available material of the

13



purity indicated in Table 1 to one that will yield semiconductor-grade

silicon, with the target composition given in the second column of Table 1.

i This is accomplished by ,a distillation system consisting of separate light-

ends and heavy-ends columns with an intermediate surge tank. 	 The light-ends and

heavy-ends columns each contain 13.5 feet of packing equivalent for a total

of 20 theoretical plates.	 The entire system is designed to operate as high

as 60 psig if desired.

Figure 5, the process flow diagram, and Figure 6, an elevation

drawing, are shown to give a perspective rather than to present the

 information in detail, such as will be done in the final report.

The purification facility is to be constructed skid mounted, and

the skids and upper sections of the distillation column are to be assembled

on location.	 The design task has proceeded rapdily, the items listed in

Table 2 having been secured from Pace.	 Cost estimation and subsequent
^.=

construction of this section of the 50 MT/year facility are facilitated by

 the fact that the components are of standard design or aro, available 'off

the shelf".

BCL Progress

Design work at BCL has progressed on the zinc pump, zinc vaporizer,

fluidized-bed unit, and the electrolytic cell. In addition, contribution

has been made to the design work carried out by RKAII and Pace.

Zinc Pump

As noted in the Experimental Support section of this report, the

basic design for the zinc pump, A6, appears to be feasible. Charges made

as the result of experimental work will be discussed in that section of the

report.

14
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TABLF. 1. SiC1 4 COMPOSITION

Typical Analysis,	 Target Analysis,
Compound or Element	 as received(a)	 product, ppb

SiC1 4 98 % (min) balance

(CH 3 ) 2 SiC1 2 tit y Imax (h) J ---

HC1 3 0.X y ---

H 3 - 10	 pph 1

P 0.5 - 5	 pph 2

As 8.2 - 1.1 ppb <1

Fe 40 - 100	 ppb <1

Al 40 ppb <1

j Cu 1 - 5	 ppb <1

Ni 3 ppb <1

Mn 1 pph

Ph ND pph

---

Sb ND ppb ---

Sn ND ppb ---

Ti ND pph ---

V:^^..^_ ND ppb ---

(a)	 Grade A160, Union Carbide Company, Sistersville, West

Virginia.

(b) Controllable to lower levels by avoiding cross product

contamination in loading and shipping.
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TABLE 2. SiC14 PURIFICATION (0) DESIGN
ITEMS RECEIVED FROM PACE*

(1) Process Flow Diagram

(2) Mechanical Flow Diagram -- Light Ends Colut.

(3) Mechanical Flow Diagram -- Heavy Ends Column

(4) Plan Below Elevation 10 1 0" -- Column A

(5) Plan Below Elevation 10'0" -- Column B

(6) Plan Above Elevation 10 1 0" -- Column A

(7) Plan Above Elevation 10'0" -- Column B

(8) One-Line Diagram and Electrical Equipment Plan

(9) Column Design Calculation

(10) Panel Design

(11) Instrumentation List

(12) Preliminary Operating Procedure Write-Up

* This list includes those items transmitted during
the visit to Houston, Texas, of January 11, 1978,
(after close of report period), as most of them had
been essentially completed during the report
period.
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Zinc Vaporizer

In the Eighth Quarterly Report, several design options for the

zinc vaporizer, A7, were discussed and it was concluded that the concept

of using a zinc flash vaporizer (negligible hysteresis in vapor output

response with a change in metered liquid input) would be difficult

if not impossible to obtain. Several factors enter into this situation.

(1) The heat of vaporization of zinc is relatively high.

(2) The AT that can be permitted between the boiling

point of zinc and an outer stainless steel contain-

ment vessel (if used) through which the heat would

be supplied, is quite limited, 75 C at best.

(3) If the zinc is to be contained in graphite,

which appears to be the best choice, the low

conductivity of the graphite imposes a further

barrier to the heat transfer.

(4) Zinc does not wet graphite, nor any other

material which is stable on contact with it,

thus having thin (inventory limiting) layers

of zinc in the vaporizer is precluded.

(5) The surface tension of liquid zinc is high

in contact with inert gas, resulting in a

layer thickness of 0.5 cm or more in a residual

pool on a plane surface; whether the surface

tension in contact with saturated zinc vapor

(as in a boiler) is sufficiently decreased to

make a significant difference is not known.

One-dimensional and two-dimensional calculations were made to

analyze the performance of a zinc vaporizer in which the heat is conducted

from the outside edge of an infinitely long graphite tray to boiling zinc

lying on the tray surface, i.e., approximating (except for radiation, which

will be discussed later) the situation in an induction-heated cylinder con-

taining a horizontal tray or trays parallel to the plane established by the

horizontal tube diameter.

19



The one-dimensional calculation assumes that the tray tempera-

ture is uniform over its thickness. The more complex, two-dimensional

calculations allowing for temperature gradient across the tray thickness

is made with a computer code. Figure 7 shows the results in terms of

zinc boil off rate as a function of distance from the wall toward the

center .line of the tray. The conditions and assumptions adopted for

the results of Figure 7 are given in Table 3.

It is seen from the results of Figure 7 that the difference

between the one- and two-dimensional results is greatest near the tray

edge. As most of the boiling occurs toward the edge (79 percent of

vaporization over the 50 percent of area adjacent to edge), the two-

dimensionally calculated capacity is preferred.

Integration of the two-dimensional results of Figure 7 gives a

tray capacity of 41.19 lb hr l ft-2 . Thus, to supply the 61.57 lb hr l of

zinc to a 25 MT/year fluidized-bed unit requires a 4.5-foot length of

4-inch-wide tray, which could be of a single length or divided in a stacked

tray arrangement.

Radiation from an induction-heated graphite cylindrical envelope

to the top tray of a two-tray stack would supply an addition 5.9-1b hr-1

capacity (assumed emmissivities: graphite = 0.9, zinc = 0.3). Calculation

of the radiative contribution to the underside of the trays would have to

be made by iteration because of the temperature gradient (as opposed to

the assumed uniform surface temperature of the boiling zinc). Carrying out

this calculation was not thought to be justified at this time. The added

contribution of underside radiation would be taken as a bonus.

An alternative to the zinc vaporizer design that has not been

mentioned earlier is now being studied, that of inductively heating the zinc

directly in a non-conducting container (quartz?). This arrangement has the

advantage of eliminating the difficult problems of radiative and/or conduc-

tive heat transfer. It has the added advantage that, once the zinc has

reached its boiling point, additional energy increments go entirely into

vaporization as long as the zinc level (and associated radiative/conductive

loss) is constant. Because of the high heat of vaporization, the response
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TABLE 3. CONDITIONS AND ASSTMIPTIONS FOR
ZINC VAPORIZER CALCULATIONS
LEADING TO FIGURE 7 RESULTS

Tray width	 4	 inches

Tray thickness	 =	 0.5 inch

Thermal conductivity
of graphite	 30 BTU hr 1 ft- 1 F l

Heat transfer coefficient
to boiling zinc	 -	 450 BTU hr 1 ft-2 r-1*

Tray edge temperature	 =	 1967 F

Boiling point of zinc
(at 1.2 atm)	 =	 1697 F

Zinc vapor yield 	 =	 1.18 x 10-3 lb BTU-1

Two-dimensional calculations by BCL Computer Code MEAT
(Dr. C. Y. Liu)

No credit taken for beat conductivity from the wall through
the zinc itself.

* Experimentally determined; see Eighth quarterly Report.
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should be very sensitive, possibly being significantly forgiving of level

fluctuations. It is too early to define the potential of this option,

but experimental and theoretical evaluations are scheduled for January

of 1978.

Fluidized-Bed Unit

After consideration of several fluidized-bed reactor concepts

which included inputs from supportive evaluation experiments relative to

selected features of each concept, a design was adopted which included some

of the features of the designs shown in Figure 3 of the Eighth Quarterly

Report.

The reactor is envisioned to have an outer jacket of 310 SS mader	

from a r-9-foot section of 8-inch pipe topped with a r-3-foot expanded section

f	 of 12-inch pipe. This shell would have a b3.5-foot graphite-lined SiC14

s	 preheat section below the distributor plate, a r-6-inch distributor plate (Sic-

7 ,	 coated graphite or sintered Sic), a reaction chamber of r-5-foot length, and
kr _.,
,,_1H	 an expanded section above the distributor plate. Both of the sections above

` the distributor would be lined with SiC-coated graphite or sintered Sic.	 The

unit would be heated by three split electric furnaces -- one located below

the distributor for preheating the SiC14 and the other two for the reaction and

expanded sections of the unit. 	 All furnaces would be provided with individually

' controlled multiple heating zones to accommodate the different heat loads

required by preheating and graded-bed-temperature operation.

w-' As is apparent from the above, plans are to introduce SiC1 4 vapor

into the bottom section of the reactor where it is to be heated to 920 C

before entering a ring of entry ports in the distributor plate positioned

roughly midway between the center of the distributor plate and the reactor

'- walls.	 Zinc vapor is introduced directly into a manifold in the distributor

plate which feeds a ring of inlet ports positioned roughly midway between

the SiC14 ports and the center of	 the distributor plate.	 Silicon seed particles

F	 i
i

are introduced into the system intermittently through the top of the system.

< By-products are removed from the reactor at the top of the expanded section,

and the silicon product is withdrawn from the center of the distributor plate.
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Temperatures of the various sections of the preheater/reactor

will be monitored and controlled by thermocouples attached to the reactor

j	 wall. Bed temperatures will be monitored optically through a sight port

in the top of the system. Current plans are to control the fluidized-bed

height by the measured pressure differential between the bottom end of

the product withdrawal tube and above the bed. This method of bed level

monitoring is frequently used in the petroleum industry for large

fluidized-bed systems in which fluidization is maintained at essentially

a minimum level; however, it has yet to be determined whether or not it

will be suitable for the highly agitated bed required for the silicon

system of interest to this program. If necessary, a radioactive bed-

level-monitoring system could be considered. However, such a system is

less desirable because of the radiation hazard and higher cost.

Electrolytic Cell

Owing to the problems encountered with corrosion of the hot-wall

„. containment vessel of the experimental ZnC1 2 electrolysis cell, 32, discussed"

in the Experimental Support section of this report, the decision has been

made to abandon the hot-wall construction and adopt the more awkward but

probably more reliable cold-wall (ambient) construction used by the Bureau

``• of Mines, Reno Station.	 Although enclosing the insulation in the process

stream would normally be undesirable, it is believed that contamination

from the insulation can be avoided since the chlorine by-product will not

be recycled in the 50 MT/year facility, and in a larger facility its recycle

r .; would take it through purification (as SiC14).	 As for the zinc, it is

"•,' difficult to devise a mechanism by which deleterious contaminants might

enter the zinc and be recycled. 	 Of the contaminants of interest, only

4`
y

elemental cadmium has a vapor pressure sufficiently high to be an appreciable

component of the vapor leaving the vaporizer in any case.

:+.'• Accordingly, the electrolytic cell design will be drawn as scaled

up to 5000 amp from the 1500-amp Bureau of Mines unit; however, greater

precautions will be taken in the containment provisions to exclude external
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air and avoid consequent formation of ZnO scum. In the Bureau of Mines work,

economy of design was a major criterion, leading to simplified construction.

In the 50 M'r/ynar experimental facility, trouble-free operation of the less

critical equipment items is a compelling objective. Tile degree to which

containment complexity can be relaxed and economies made at that point

should be discernable from subsequent operation of this type of cell both

at DCL and the Bureau of Mines.

Plans for Next Report Period

Design of the 50 MT/year experimental facility is scheduled for

conclusion during the next report period. Estimates will be made of the

equipment, installation, and operating costs of the experimental facility

and the results will be used as the basis of a refined estimate for pro-

duction of semiconductor-grade silicon in a 1000 MT/year facility.

EXPERIMENTAL SUPPORT PROGRAM

During the perio" covered by this report, work on the experimental

support program was concentrated in the following areas, to be discussed

in turn.

(1) Preparation in the miniplant of qua'ity-

evaluation material for shipment to JPL.

(2) Evaluation of zinc displacement pump design.

(3) Evaluation of alternative zinc vaporizer

design.

(4) Evaluation of ZnC1 2 electrolytic cell.

(5) Evaluation of fluidized-bed design via

operation of 7-inch-diameter mock-up.

(6) Compatibility tests of materials of

construction.
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Preparation of Material
for Evaluation

Several runs were made in the miniplant during this report period

to supply JPL with quality-evaluation material. Por these runs, crushed

and leached (NP + H2SO4) semiconductor-grade silicon was used as the seed

material, together with epitaxial-grade SiC14 and 99.9+ percent pure zinc*

as feed materials. During the course of these runs, various arrangementr

have been employed to remove product from the reactor during the run so as

to prevent loss of material from over-expansion of the bed. The problem

with "in flight" product withdrawal is prevention of condensation of zinc

and/or ZnC12 in the produr.^ outlet. This can be done, in principle, by

purging the product exit line with inert gas. However, underpurging does

not prevent condenoation, and overpurging, with insufficient inert gas

heating in the exit line, can lead to cooling of the bed in the area of the

exit line. If the product exit line is placed in the area of high zinc

concentration, overpurging of the exit line can lead to gas phase conden-

sation of a zinc mist with resultant nucleation of silicon dust, and possible

condensation of liquid zinc on the fluidized-bed product resulting in

agglomeration. The latter condition is believed to occur primarily during

surges of purge gas through the exit tube. Accordingly, a slow steady

removal of product rather than removal by surges is to be preferred. Progress

in that direction is being made; however, iL should be noted that as the

small scale of the operation aggravates the problem, larger scale operation

should ameliorate the problem.

A significant observation has been made, albeit qualitatively, in

the course of these runs: with the small depth of bed (occasioned by the

limited amount of seed material available and the "in flight" removal of

product) and with the increasing size of the bed particles as their seed

content is decreased (providing less surface per unit volume for hetero-

geneous reaction), the gas-phase nucleation of silicon "dust" is increased.

* Belmont Metals, Inc., Brooklyn, New York.
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Fortunately, with the increased bed depth of the 3.6 kg/hour (25 MT/year)

units of the 50 MT/year experimental facility, the generation of gas-phase-

nucleated silicon should decrease. It is as yet too early to predict the

ultimate fraction of product that will be entrained in the by-product gases

as dust, as opposed to being collected as a dense coating on the seed particles.

During the sequence of quality-material preparation runs, chlorina-

tion of the wall deposit between runs was carried out several times to

demonstrate its feasibility. If the chlorination removal of upper wall

deposit* is not done, the quartz reactor cracks on cool-down and must be

replaced. During one wall-deposit chlorination experiment, the chlorination

efficiency (conversion Of-C12 to SiC14) was measured at 81 percent, or about

that (80 percent) adopted for this operation in the process flow sheet

(F1 through F4).

The history of the runs made during the report period to supply JPL

with quality-evaluation ma.arial is shown in Figure 8. The 458-gram starting

bed of semiconductor-grade seed used in Run No. 91 is traced through subse-

quent runs in which portions of the prior product are used as seed. The

product of the three-run sequence 91-92-93 consisted of 77.4 percent deposited

silicon, and that of the four-run sequence 91-92-94-95 consisted of 85.6 per-

cent deposited silicon. A total of 1.56 kg was sent to JPL and half of the

product of Run No. 94 was retained for use as seed in another material

preparation run.

Evaluation of Zinc
Displacement Pump Design

In support of the design effort, four trials have been made of

a mock up of the mechanical displacement zinc pump, A6 (see Figure 6,

* In opting for the smaller bed and "in flight" product withdrawal to avoid
loss of material, the overall bed efficiency is decreased and more silicon
is deposited on the reactor wall above the bed. Returning to deeper beds
in the miniplant, and, more importantly, moving to much deeper beds in the
experimental facility is expected to decrease this problem to a level that
can be managed as originally planned.
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458 g of 105 x 149 pm semiconductor-grade seed

(Run 91)

	

- 743 g [61.6 percent seed]	 ` 58 g Reserve

1
371 g

(Run 92)

687 g [33.3 percent seed]

1
500 g
Run 93)

738 g [22.6 percent seed] —► 722 g to JPL
10 g Reserve
6 g Contaminated

Residue

500 g

(Run 94)

1024 g [24.9 percent seed] -- ► 502 g Reserve

1
500 g

(Run 95)

847 g [14.7 percent seed]

	

	 829 g to JPL
18 g Reserve

FIGURE B. PREPARATION OF QUALITY EVALUATION MATERIAL

(The upper number in each group is the weight of the
starting material, the middle number in parentheses
is the run number, and the lower number is the weight
of the product of that run. The bracketed number is
the seed content of that product in percent. The
notes to the right indicate disposition.)
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	 Eighth Quarterly ReperL). In three cases, minor operational problems pre-

vented the full evaluation desired; however, these have had nothing to do

with the principle of operation. The fourth experiment demonstrated the

feasibility of the design in that (1) the zinc was delivered uniformly

from the feed chamber, (2) this chamber was refilled from the zinc

reservoir,and (3) the feed chamber was again emptied at a controlled rate.

1

	

	 The major modifications to the system made during the course of

this work were (1) reduction of the transfer port size to a 1/8-inch by

I'

	

	 1/2-inch slot between the zinc reservoir and feed chamber to prevent

leakage and (2) an increase in clearance between the piston and the chamber

wall, except adjacent to the transfer port, to minimize binding.

}Y^

^^11

	 Zinc Vaporizer

Two experimental runs (89 and 90/90x) were made in the miniplant

r	 during the report period to check the operation of a tray-type vaporizer

(see Eighth Quarterly Report, Figure 5) having two trays with a total surface

area available to zinc vaporization of about 0.12 ft 2 , i.e., about 2 times

'

	

	 that of the single tray 1350 C "flash vaporizer" used in most of the runs

in the miniplant. The rates of vaporization obtained (e.g., 36 g/hour)

with a temperature of 1100 C at the graphite shell surrounding the trays,

were sufficient to support the operation of the 2-inch-diameter fluidized bed

.r y

	

	 at the feed rates normally used; however, liquid zinc appeared in the quartz

enclosure at higher rates. Thus, it was impossible to assess the limits of

the vaporizer capacity. It was not clear whether the appearance of liquid

zinc in the quartz enclosure was the result of (1) overflow (i.e., liquid

j
feed rate exceeding vaporization capacity) or (2) condensation of zinc vapor

`

	

	 on the quartz enclosure (which was insulated from the surrounding induction

coil, but not externally heated). This problem, and the limitations in

permissible heat flux through thin plates of graphite, make it difficult to

carry ont meaningful experiments on a small scale. The results are being

analyzed as to their implications for the design of the zinc vaporizer for

the experimental facility.
it
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Plans are being made for zinc vaporization experiments in which

the zinc is directly heated inductively as discussed in the Design section

of this report.

Electrolytic Cell

Several Experiments were carried out during the report period in

the hot-wall electrolytic cell'. After the experiments reported in the

Eighth Quarterly Report, the cell was refurbished to provide greater free-

board in the graphite liner to avoid the problem of the foamed ZnC12/KCL

(50150 thole ratio) mixture from overflowing and coming in contact with the

stainless steel wall and corroding it through. A subsequent electrolysis

run was made, and after. 23 hours of uneventful operation at 100 amps

(5 amps inch-2 ) and 5.1 volts, erratic current excursions to 150 amps were

noted. After an additional 7 hours at 100 amps and 6 hours at 150 amps

[voltage purposely raised to give 150 amps (7.5 amps inch- 2 ]), a short

developed that blew the DC power supply fuse.

Inspection of the cell on cooling revealed two problems. Some of

the zinc had not coalesced, resulting in its not having drained from the

cathode surface. It is n­., a n.:onceivable that at opetacing temperature

(500 C), the undrained zinc had indeed bridged the 0.5-inch gap between

anode and cathode. Coalescence appears to have been prevented by a skin,

presumably of zinc oxide, on the zinc surface.

Further examination of the diea;dntled cell revealed a salt

accumulation in one section of the annulus between the graphite and the

stainless steel, and partial corrosion in the area. 'Discoloration of the

wall was observed immediately above, which is taken to be evidence that

the elec: , Uyte had foamed and had overflowed the graphite crucible at that

* The generul construction of the cell is shown in Figure 20 of the Fifth/
Sixth Quarterly Report. However, horizontal electrodes rather than the
vertical electrodes shown L_-7e been employed, approximating the Bureau
of Mines electrode design.
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location, which corresponded to the side of the anode at which chlorine was

evolved from the slantod gas channels oil 	 underside.

A subsequent experiment in a quartz container showed considerable

gas evolution when the ZnC1 2 and KCl were mixed at eQ20 C. It is

believed that the gas evolution (and foaming) resulted from residual mols-

ture in the ZnC1 2* . The product of reaction of the moisture with the ZnC12

would be U0 which could act to stabilize bubbles and permit formation of

a foam during chlorine evolution. The presence of zinc oxide prwonLs the

coalescence of zinc. Thus it is believed that most, if not all, of the

problems experier,ued with the electrolytic cell stem from the presence of

excessive moisture in the zinc chloride. It is not anticipated that such

problems will be encountered with the anhydrous by-product of the experi-

mental facility.

A supply of presu mbly anhydrous zinc chloride is available from

operation of the miniplant* * ; however, further work with the electrolytic

cell has been deferred, since although the hot-wall construction was con-

venient for fabrication of the experimental cell, it has been decided that

the design of the cells for the experimental faeill^v would be of the "cold"-

wall type and follow more closely the Bureau of pIines practice.

The course of future experimental work with the electrolysis

cell is currently under discussion.

Fluidized-Bed mock-Up

A full scale (7-inch-diameter) mock-up of the 25 MT/year fluidized-

bed unit was assembled so as to evaluate the bed action and gas mixing as a

function of gas flow. A group of eight holes is provided around the center

of the distribution plate to function as "zinc" inlets, and a group of

12 holes surrounding that provides for "S1C14" introduction.

*	 Technical grade, anhydrous (undistilled), Lnton-Colby Chemical Company,
Columbus, Ohio.

** Much of the miniplant• by-product has been discarded, but 120 kg has
been set nside for future experiments.
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In the mock up, compressed air is used as the fluidizing gas, with

the velocity of the air being based on relative density and viscosity so

as to approximate the fluidization condition for zinc and SiC14 vapors at 900 C

In many applications of fluidized beds, modelling is complicated by the fact

that the gases enter at temperatures much lower than that of the bed, and

considerable gas expansion occurs in the bed as the gas is heated. However.,

in the case at hand, the reactants must be preheated to reaction temperature

before entering the bed (to prevent zinc mist condensation). Thus, the

complication of gas expansion in the bed is obviated, and modelling with

air at ambient temperature reliably represents the fluidization pattern

for the condition being modelled. Gas mixing in the reactor can be followed

by introducing smoke through one or another of the reactant inlet groups,

or HC1-containing air through one set and N11 3-containing air through the

other to form NH4C1 smoke by reaction in situ.

In preliminary experiments with the model, the fluidization pattern

appeared to be satisfactory; however, an additional inlet port had to be

added to the outer "SiC14" inlet manifold to obtain uniform flow distribu-

tion. Modelling experiments will be continued in the next report period

with the objective of observing the effects of particle size, bed height,

and relative flow through the gas distributor on fluidization and on mixing

of the two gas streams. In addition, distributor plate designs will be

studied.

Materials Compatibility

During the current report period, several experiments were

carried out to determine the compatibility of potential materials of

construction.

To determine the corrosion resistance of stainless steel tcR

i

	

	 zinc chloride, a sample of 304 stainless steel was exposed to zinc chloride

for 72 hours at 500 C. No corrosion of the stainless steel was indicated

by appearance or weight loss. The residual zinc chloride showed no color,

and spectrographic  anal sis^- , y	 gave no evidence of the presence of iron,
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11 chromium, or nickel.	 Thus, it is highly probable that stainless steel

can be used in contact with zinc chloride, at least to 500 C, from the stand-

!'Y point of equipment durability.	 However, the question of possible transfer
j,

of contamination to the silicon product deserves further consideration.

Although spectroscopically undetectable quantities of (e.g.) iron chloride

r from stainless steel corrosion would be electrolyzed and the iron go into

solution in the zinc, the one-step distillation during zinc vaporization

.t should leave the iron behind.	 The vapor pressure of iron is 10 -10 atm at

the boiling point of zinc, and when that factor is multiplied by the activity
+`t
Lr^. of iron in zinc at a low ppm level, an infinitesinal transfer results. 	 Only

 vaporizerin the case of entrainment of unva orized zinc droplets from the vaP	 P	 P

' could significant impurity transfer result from that source.

r
f The corrosion of stainless steel by liquid zinc is a different

matter.	 The zinc penetrates the grain structure of stainless steel and as

`	 l both iron and nickel are highly soluble in zinc., the stainless steel disinte-

r. , grates.	 To check the transport of zinc vapor through the slight porosity

of ATJ graphite, a sample of 304 stainless steel was encapsulated i,, an ATJ

f graphite "test tube" 	 (0.5-inch wall thickness) provided with a steel wool

"getter" section at the top plugged on both sides to make sure that penetra-

tion of zinc could not occur through the originally open end of the tube.

After 100 hours in zinc vapor at 850 C, the stainless steel slugs at the

"z bottom of the test tube had been almost completely infiltrated with zinc

which apparently diffused through the CraphCte (no cracks in the graphite

were observed).

'j
It is evident from the above that any design involving graphite

tt;± barriers between zinc and stainless steel must provide for elimination of
_-

the porosity in the graphite and avoidance of cracked joints, etc.

It is not planned that stainless steel will be used in contact

with the ZnC1 2-KCl mixture in the electrolytic cell, as the KC1 content

would lead to the solution of the more electrovalent protectiverprobably

chlorides on the surface of the stainless steel ( FeC1 2 , NiC1 2) and open

r the surface to chlorine corrosion as suggested by the results of the
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electrolytic cell experiments described above. Accordingly, no corrosion

tests are contemplated of the ZnC1 2/KC1 mixture versus stainless steel.

Work Planned for the Next Report Period

The following work is planned for the next report period.

(1) Preparation of material for quality evaluation

by JPL and/or its subcontractors will be continued.

(2) Experiments will be continued with the zinc

displacement pump to permit refinement of

the design.

(3) The concept of heating zinc directly by induc-

tion will be experimentally evaluated.

(4) Experiments will be planned and executed to

define the factors wherein the electrolytic

recovery of zinc from the zinc/ZnC1 2 by-

product (containing some silicon dust)

Differs from the electrolysis of ZnCl2

developed by the Bureau of Mines.

(5) Experiments will be continued in the full-

scale model of the fluidized bed.

(6) other experiments will be performed as may

be needed in support of the design work.
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