87 research outputs found

    FAS-dependent cell death in α-synuclein transgenic oligodendrocyte models of multiple system atrophy

    Get PDF
    Multiple system atrophy is a parkinsonian neurodegenerative disorder. It is cytopathologically characterized by accumulation of the protein p25α in cell bodies of oligodendrocytes followed by accumulation of aggregated α-synuclein in so-called glial cytoplasmic inclusions. p25α is a stimulator of α-synuclein aggregation, and coexpression of α-synuclein and p25α in the oligodendroglial OLN-t40-AS cell line causes α-synuclein aggregate-dependent toxicity. In this study, we investigated whether the FAS system is involved in α-synuclein aggregate dependent degeneration in oligodendrocytes and may play a role in multiple system atrophy. Using rat oligodendroglial OLN-t40-AS cells we demonstrate that the cytotoxicity caused by coexpressing α-synuclein and p25α relies on stimulation of the death domain receptor FAS and caspase-8 activation. Using primary oligodendrocytes derived from PLP-α-synuclein transgenic mice we demonstrate that they exist in a sensitized state expressing pro-apoptotic FAS receptor, which makes them sensitive to FAS ligand-mediated apoptosis. Immunoblot analysis shows an increase in FAS in brain extracts from multiple system atrophy cases. Immunohistochemical analysis demonstrated enhanced FAS expression in multiple system atrophy brains notably in oligodendrocytes harboring the earliest stages of glial cytoplasmic inclusion formation. Oligodendroglial FAS expression is an early hallmark of oligodendroglial pathology in multiple system atrophy that mechanistically may be coupled to α-synuclein dependent degeneration and thus represent a potential target for protective intervention

    Congruence and diversity of butterfly-host plant associations at higher taxonomic levels

    Get PDF
    We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages

    An illustrated key to male Actinote from Southeastern Brazil (Lepidoptera, Nymphalidae)

    Full text link

    Hybrid speciation in Heliconius butterflies? A review and critique of the evidence

    Get PDF
    The evidence supporting the recent hypothesis of a homoploid hybrid origin for the butterfly species Heliconius heurippa is evaluated. Data from selective breeding experiments, mate-choice studies, and a wide variety of DNA markers are reviewed, and an alternative hypothesis for the origin of the species and its close relatives is proposed. A scenario of occasional red wing-pattern mutations in peripheral populations of Heliconius cydno with subsequent adaptive convergence towards sympatric mimicry rings involving H. melpomene and H. erato is offered as an alternative to the HHS hypothesis. Recent twists of this tale are addressed in a postscript

    An overview of tissue engineering approaches for management of spinal cord injuries

    Get PDF
    Severe spinal cord injury (SCI) leads to devastating neurological deficits and disabilities, which necessitates spending a great deal of health budget for psychological and healthcare problems of these patients and their relatives. This justifies the cost of research into the new modalities for treatment of spinal cord injuries, even in developing countries. Apart from surgical management and nerve grafting, several other approaches have been adopted for management of this condition including pharmacologic and gene therapy, cell therapy, and use of different cell-free or cell-seeded bioscaffolds. In current paper, the recent developments for therapeutic delivery of stem and non-stem cells to the site of injury, and application of cell-free and cell-seeded natural and synthetic scaffolds have been reviewed

    Roles of spatial scale and rarity on the relationship between butterfly species richness and human density in South Africa

    Get PDF
    Wildlife and humans tend to prefer the same productive environments, yet high human densities often lead to reduced biodiversity. Species richness is often positively correlated with human population density at broad scales, but this correlation could also be caused by unequal sampling effort leading to higher species tallies in areas of dense human activity. We examined the relationships between butterfly species richness and human population density at five spatial resolutions ranging from 2′ to 60′ across South Africa. We used atlas-type data and spatial interpolation techniques aimed at reducing the effect of unequal spatial sampling. Our results confirm the general positive correlation between total species richness and human population density. Contrary to our expectations, the strength of this positive correlation did not weaken at finer spatial resolutions. The patterns observed using total species richness were driven mostly by common species. The richness of threatened and restricted range species was not correlated to human population density. None of the correlations we examined were particularly strong, with much unexplained variance remaining, suggesting that the overlap between butterflies and humans is not strong compared to other factors not accounted for in our analyses. Special consideration needs to be made regarding conservation goals and variables used when investigating the overlap between species and humans for biodiversity conservation
    corecore