5,332 research outputs found

    Gravitational Collapse in One Dimension

    Full text link
    We simulate the evolution of one-dimensional gravitating collisionless systems from non- equilibrium initial conditions, similar to the conditions that lead to the formation of dark- matter halos in three dimensions. As in the case of 3D halo formation we find that initially cold, nearly homogeneous particle distributions collapse to approach a final equilibrium state with a universal density profile. At small radii, this attractor exhibits a power-law behavior in density, {\rho}(x) \propto |x|^(-{\gamma}_crit), {\gamma}_crit \simeq 0.47, slightly but significantly shallower than the value {\gamma} = 1/2 suggested previously. This state develops from the initial conditions through a process of phase mixing and violent relaxation. This process preserves the energy ranks of particles. By warming the initial conditions, we illustrate a cross-over from this power-law final state to a final state containing a homogeneous core. We further show that inhomogeneous but cold power-law initial conditions, with initial exponent {\gamma}_i > {\gamma}_crit, do not evolve toward the attractor but reach a final state that retains their original power-law behavior in the interior of the profile, indicating a bifurcation in the final state as a function of the initial exponent. Our results rely on a high-fidelity event-driven simulation technique.Comment: 14 Pages, 13 Figures. Submitted to MNRA

    A general model to optimise CuII labelling efficiency of double-histidine motifs for pulse dipolar EPR applications

    Get PDF
    JLW is supported by the BBSRC DTP Eastbio. We thank the Leverhulme Trust for support (RPG-2018-397). This work was supported by equipment funding through the Wellcome Trust (099149/Z/12/Z) and BBSRC (BB/R013780/1). We gratefully acknowledge ISSF support to the University of St Andrews from the Wellcome Trust.Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to studies of biomolecules underpinning health and disease by providing highly accurate and precise geometric constraints. Combining double-histidine (dH) motifs with CuII spin labels shows promise for further increasing the precision of distance measurements, and for investigating subtle conformational changes. However, non-covalent coordination-based spin labelling is vulnerable to low binding affinity. Dissociation constants of dH motifs for CuII-nitrilotriacetic acid were previously investigated via relaxation induced dipolar modulation enhancement (RIDME), and demonstrated the feasibility of exploiting the double histidine motif for EPR applications at sub-ÎĽM protein concentrations. Herein, the feasibility of using modulation depth quantitation in CuII-CuII RIDME to simultaneously estimate a pair of non-identical independent KD values in such a tetra-histidine model protein is addressed. Furthermore, we develop a general speciation model to optimise CuII labelling efficiency, in dependence of pairs of identical or disparate KD values and total CuII label concentration. We find the dissociation constant estimates are in excellent agreement with previously determined values, and empirical modulation depths support the proposed model.Publisher PDFPeer reviewe

    From AMANDA to IceCube

    Full text link
    The first string of the neoteric high energy neutrino telescope IceCube successfully began operating in January 2005. It is anticipated that upon completion the new detector will vastly increase the sensitivity and extend the reach of AMANDA to higher energies. A discussion of the IceCube's discovery potential for extra-terrestrial neutrinos, together with the prospects of new physics derived from the ongoing AMANDA research will be the focus of this paper. Preliminary results of the first antarctic high energy neutrino telescope AMANDA searching in the muon neutrino channel for localized and diffuse excess of extra-terrestrial neutrinos will be reviewed using data collected between 2000 and 2003. Neutrino flux limits obtained with the all-flavor dedicated UHE and cascade analyses will be described. A first neutrino spectrum above one TeV in agreement with atmospheric neutrino flux expectations and no extra-terrestrial contribution will be presented, followed by a discussion of a limit for neutralino CDM candidates annihilating in the center of the Sun.Comment: 15 pages, 8 figures Invited talk contribution at 5th International Conference on Non-accelerator New Physics (NANP 05), Dubna, Russia, 20-25 Jun 200

    The WISE gamma-ray strip parametrization: the nature of the gamma-ray Active Galactic Nuclei of Uncertain type

    Full text link
    Despite the large number of discoveries made recently by Fermi, the origins of the so called unidentified gamma-ray sources remain unknown. The large number of these sources suggests that among them there could be a population that significantly contributes to the isotropic gamma-ray background and is therefore crucial to understand their nature. The first step toward a complete comprehension of the unidentified gamma-ray source population is to identify those that can be associated with blazars, the most numerous class of extragalactic sources in the gamma-ray sky. Recently, we discovered that blazars can be recognized and separated from other extragalactic sources using the infrared (IR) WISE satellite colors. The blazar population delineates a remarkable and distinctive region of the IR color-color space, the WISE blazar strip. In particular, the subregion delineated by the gamma-ray emitting blazars is even narrower and we named it as the WISE Gamma-ray Strip (WGS). In this paper we parametrize the WGS on the basis of a single parameter s that we then use to determine if gamma-ray Active Galactic Nuclei of the uncertain type (AGUs) detected by Fermi are consistent with the WGS and so can be considered blazar candidates. We find that 54 AGUs out of a set 60 analyzed have IR colors consistent with the WGS; only 6 AGUs are outliers. This result implies that a very high percentage (i.e., in this sample about 90%) of the AGUs detected by Fermi are indeed blazar candidates.Comment: 22 pages, 13 figures, Astrophysical Journal in pres

    Matching Dynamics with Constraints

    Full text link
    We study uncoordinated matching markets with additional local constraints that capture, e.g., restricted information, visibility, or externalities in markets. Each agent is a node in a fixed matching network and strives to be matched to another agent. Each agent has a complete preference list over all other agents it can be matched with. However, depending on the constraints and the current state of the game, not all possible partners are available for matching at all times. For correlated preferences, we propose and study a general class of hedonic coalition formation games that we call coalition formation games with constraints. This class includes and extends many recently studied variants of stable matching, such as locally stable matching, socially stable matching, or friendship matching. Perhaps surprisingly, we show that all these variants are encompassed in a class of "consistent" instances that always allow a polynomial improvement sequence to a stable state. In addition, we show that for consistent instances there always exists a polynomial sequence to every reachable state. Our characterization is tight in the sense that we provide exponential lower bounds when each of the requirements for consistency is violated. We also analyze matching with uncorrelated preferences, where we obtain a larger variety of results. While socially stable matching always allows a polynomial sequence to a stable state, for other classes different additional assumptions are sufficient to guarantee the same results. For the problem of reaching a given stable state, we show NP-hardness in almost all considered classes of matching games.Comment: Conference Version in WINE 201

    Infrared Colors of the gamma-ray detected blazars

    Full text link
    Blazars constitute the most enigmatic class of extragalactic gamma-ray sources, and their observational features have been ascribed to a relativistic jet closely aligned to the line of sight. They are generally divided in two main classes: the BL Lac objects (BL Lacs) and the Flat Spectrum Radio Quasars (FSRQs). In the case of BL Lacs the double bumped spectral energy distribution (SED) is generally described by the Synchrotron Self Compton (SSC) emission, while for the FSRQs it is interpreted as due to External Compton (EC) emission. Recently, we showed that in the [3.4]-[4.6]-[12] micron color- color diagram the blazar population covers a distinct region (i.e., the WISE blazar Strip, WBS), clearly separated from the other extragalactic sources that are dominated by thermal emission. In this paper we investigate the relation between the infrared and gamma-ray emission for a subset of confirmed blazars from the literature, associated with Fermi sources, for which WISE archival observations are available. This sample is a proper subset of the sample of sources used previously, and the availability of Fermi data is critical to constrain the models on the emission mechanisms for the blazars. We found that the selected blazars also lie on the WISE blazar Strip covering a narrower region of the infrared color-color planes than the overall blazars population. We then found an evident correlation between the IR and gamma-ray spectral indices expected in the SSC and EC frameworks. Finally, we determined the ratio between their gamma-ray and infrared fluxes, a surrogate of the ratio of powers between the inverse Compton and the synchrotron SED components, and used such parameter to test different emitting scenarios blazars.Comment: 15 pages, 14 figure, accepted for publication in ApJ, to appear in 2012 March 20 editio

    High-Energy Neutrino Astronomy

    Full text link
    Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature accelerates protons and photons to energies in excess of 102010^{20} and 101310^{13} eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos.Comment: 9 pages, Latex2e, uses ws-procs975x65standard.sty (included), 4 postscript figures. To appear in Proceedings of Thinking, Observing, and Mining the Universe, Sorrento, Italy, September 200

    Majorana: from atomic and molecular, to nuclear physics

    Get PDF
    In the centennial of Ettore Majorana's birth (1906-1938?), we re-examine some aspects of his fundamental scientific production in atomic and molecular physics, including a not well known short communication. There, Majorana critically discusses Fermi's solution of the celebrated Thomas-Fermi equation for electron screening in atoms and positive ions. We argue that some of Majorana's seminal contributions in molecular physics already prelude to the idea of exchange interactions (or Heisenberg-Majorana forces) in his later workson theoretical nuclear physics. In all his papers, he tended to emphasize the symmetries at the basis of a physical problem, as well as the limitations, rather than the advantages, of the approximations of the method employed.Comment: to appear in Found. Phy

    Robust implications on Dark Matter from the first FERMI sky gamma map

    Full text link
    We derive robust model-independent bounds on DM annihilations and decays from the first year of FERMI gamma-ray observations of the whole sky. These bounds only have a mild dependence on the DM density profile and allow the following DM interpretations of the PAMELA and FERMI electron/positron excesses: primary channels mu+ mu-, mu+ mu-mu+mu- or e+ e- e+ e-. An isothermal-like density profile is needed for annihilating DM. In all such cases, FERMI gamma spectra must contain a significant DM component, that may be probed in the future.Comment: 16 pages, 8 figures. Final versio
    • …
    corecore