9,751 research outputs found

    Multi-wavelength Observations of Blazar AO 0235+164 in the 2008-2009 Flaring State

    Get PDF
    The blazar AO 0235+164 (z = 0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out from the radio to γ-ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP-WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the γ-ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 R_g. We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus

    Split-Stirling-cycle displacer linear-electric drive

    Get PDF
    The retrofit of a 1/4-W split-Stirling cooler with a linear driven on the displacer was achieved and its performance characterized. The objective of this work was to demonstrate that a small linear motor could be designed to meet the existing envelope specifications of the cooler and that an electric linear drive on the displacer could improve the cooler's reliability and performance. The paper describes the characteristics of this motor and presents cooler test results

    Systematic search for high-energy gamma-ray emission from bow shocks of runaway stars

    Full text link
    Context. It has been suggested that the bow shocks of runaway stars are sources of high-energy gamma rays (E > 100 MeV). Theoretical models predicting high-energy gamma-ray emission from these sources were followed by the first detection of non-thermal radio emission from the bow shock of BD+43^\deg 3654 and non-thermal X-ray emission from the bow shock of AE Aurigae. Aims. We perform the first systematic search for MeV and GeV emission from 27 bow shocks of runaway stars using data collected by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope (Fermi). Methods. We analysed 57 months of Fermi-LAT data at the positions of 27 bow shocks of runaway stars extracted from the Extensive stellar BOw Shock Survey catalogue (E-BOSS). A likelihood analysis was performed to search for gamma-ray emission that is not compatible with diffuse background or emission from neighbouring sources and that could be associated with the bow shocks. Results. None of the bow shock candidates is detected significantly in the Fermi-LAT energy range. We therefore present upper limits on the high-energy emission in the energy range from 100 MeV to 300 GeV for 27 bow shocks of runaway stars in four energy bands. For the three cases where models of the high-energy emission are published we compare our upper limits to the modelled spectra. Our limits exclude the model predictions for Zeta Ophiuchi by a factor ≈\approx 5.Comment: 5 pages, 5 figures, 1 table, accepted by A&

    Gravitational Collapse in One Dimension

    Full text link
    We simulate the evolution of one-dimensional gravitating collisionless systems from non- equilibrium initial conditions, similar to the conditions that lead to the formation of dark- matter halos in three dimensions. As in the case of 3D halo formation we find that initially cold, nearly homogeneous particle distributions collapse to approach a final equilibrium state with a universal density profile. At small radii, this attractor exhibits a power-law behavior in density, {\rho}(x) \propto |x|^(-{\gamma}_crit), {\gamma}_crit \simeq 0.47, slightly but significantly shallower than the value {\gamma} = 1/2 suggested previously. This state develops from the initial conditions through a process of phase mixing and violent relaxation. This process preserves the energy ranks of particles. By warming the initial conditions, we illustrate a cross-over from this power-law final state to a final state containing a homogeneous core. We further show that inhomogeneous but cold power-law initial conditions, with initial exponent {\gamma}_i > {\gamma}_crit, do not evolve toward the attractor but reach a final state that retains their original power-law behavior in the interior of the profile, indicating a bifurcation in the final state as a function of the initial exponent. Our results rely on a high-fidelity event-driven simulation technique.Comment: 14 Pages, 13 Figures. Submitted to MNRA

    Afrika-Seminaar: Die geologie van Afrika in oorsig

    Get PDF
    Dit is vanselfsprekend dat in ’n artikel soos hierdie die geologie van Afrika slegs in hooftrekke aangedui kan word en dat daar geen sprake van besonderhede kan wees nie. Wat hierop volg kan dus eintlik maar net as’n selektiewe uittreksel uit die publikasies van sekere skrywers oor Afrika beskou word, en met die oog hierop is dit miskien goed om eers kortliks die vernaamste bronne van inligting aan te dui

    H2 molecule in strong magnetic fields

    Full text link
    The Pauli-Hamiltonian of a molecule with fixed nuclei in a strong constant magnetic field is asymptotic, in norm-resolvent sense, to an effective Hamiltonian which has the form of a multi-particle Schr\"odinger operator with interactions given by one-dimensional \delta-potentials. We study this effective Hamiltonian in the case of the H2 -molecule and establish existence of the ground state. We also show that the inter-nuclear equilibrium distance tends to 0 as the field-strength tends to infinity

    Study of ion feedback in multi-GEM structures

    Full text link
    We study the feedback of positive ions in triple and quadruple Gas Electron Multiplier (GEM) detectors. The effects of GEM hole diameter, detector gain, applied voltages, number of GEMs and other parameters on ion feedback are investigated in detail. In particular, it was found that the ion feedback is independent of the gas mixture and the pressure. In the optimized multi-GEM structure, the ion feedback current can be suppressed down to 0.5% of the anode current, at a drift field of 0.1 kV/cm and gain of 10^4. A simple model of ion feedback in multi-GEM structures is suggested. The results obtained are relevant to the performance of time projection chambers and gas photomultipliers.Comment: 9 pages, 11 figures. Submitted to Nucl. Instr. and Meth.
    • …
    corecore