223 research outputs found

    How to hide a secret direction

    Get PDF
    We present a procedure to share a secret spatial direction in the absence of a common reference frame using a multipartite quantum state. The procedure guarantees that the parties can determine the direction if they perform joint measurements on the state, but fail to do so if they restrict themselves to local operations and classical communication (LOCC). We calculate the fidelity for joint measurements, give bounds on the fidelity achievable by LOCC, and prove that there is a non-vanishing gap between the two of them, even in the limit of infinitely many copies. The robustness of the procedure under particle loss is also studied. As a by-product we find bounds on the probability of discriminating by LOCC between the invariant subspaces of total angular momentum N/2 and N/2-1 in a system of N elementary spins.Comment: 4 pages, 1 figur

    The quantum Chernoff bound as a measure of distinguishability between density matrices: application to qubit and Gaussian states

    Get PDF
    Hypothesis testing is a fundamental issue in statistical inference and has been a crucial element in the development of information sciences. The Chernoff bound gives the minimal Bayesian error probability when discriminating two hypotheses given a large number of observations. Recently the combined work of Audenaert et al. [Phys. Rev. Lett. 98, 160501] and Nussbaum and Szkola [quant-ph/0607216] has proved the quantum analog of this bound, which applies when the hypotheses correspond to two quantum states. Based on the quantum Chernoff bound, we define a physically meaningful distinguishability measure and its corresponding metric in the space of states; the latter is shown to coincide with the Wigner-Yanase metric. Along the same lines, we define a second, more easily implementable, distinguishability measure based on the error probability of discrimination when the same local measurement is performed on every copy. We study some general properties of these measures, including the probability distribution of density matrices, defined via the volume element induced by the metric, and illustrate their use in the paradigmatic cases of qubits and Gaussian infinite-dimensional states.Comment: 16 page

    On the geometry of four qubit invariants

    Get PDF
    The geometry of four-qubit entanglement is investigated. We replace some of the polynomial invariants for four-qubits introduced recently by new ones of direct geometrical meaning. It is shown that these invariants describe four points, six lines and four planes in complex projective space CP3{\bf CP}^3. For the generic entanglement class of stochastic local operations and classical communication they take a very simple form related to the elementary symmetric polynomials in four complex variables. Moreover, their magnitudes are entanglement monotones that fit nicely into the geometric set of nn-qubit ones related to Grassmannians of ll-planes found recently. We also show that in terms of these invariants the hyperdeterminant of order 24 in the four-qubit amplitudes takes a more instructive form than the previously published expressions available in the literature. Finally in order to understand two, three and four-qubit entanglement in geometric terms we propose a unified setting based on CP3{\bf CP}^3 furnished with a fixed quadric.Comment: 19 page

    On local invariants of pure three-qubit states

    Get PDF
    We study invariants of three-qubit states under local unitary transformations, i.e. functions on the space of entanglement types, which is known to have dimension 6. We show that there is no set of six independent polynomial invariants of degree less than or equal to 6, and find such a set with maximum degree 8. We describe an intrinsic definition of a canonical state on each orbit, and discuss the (non-polynomial) invariants associated with it.Comment: LateX, 13 pages. Minor typoes corrected. Published versio

    Activation of Serine One-Carbon Metabolism by Calcineurin A beta 1 Reduces Myocardial Hypertrophy and Improves Ventricular Function

    Get PDF
    Background In response to pressure overload, the heart develops ventricular hypertrophy that progressively decompensates and leads to heart failure. This pathological hypertrophy is mediated, among others, by the phosphatase calcineurin and is characterized by metabolic changes that impair energy production by mitochondria. Objectives The authors aimed to determine the role of the calcineurin splicing variant CnAβ1 in the context of cardiac hypertrophy and its mechanism of action. Methods Transgenic mice overexpressing CnAβ1 specifically in cardiomyocytes and mice lacking the unique C-terminal domain in CnAβ1 (CnAβ1Δi12 mice) were used. Pressure overload hypertrophy was induced by transaortic constriction. Cardiac function was measured by echocardiography. Mice were characterized using various molecular analyses. Results In contrast to other calcineurin isoforms, the authors show here that cardiac-specific overexpression of CnAβ1 in transgenic mice reduces cardiac hypertrophy and improves cardiac function. This effect is mediated by activation of serine and one-carbon metabolism, and the production of antioxidant mediators that prevent mitochondrial protein oxidation and preserve ATP production. The induction of enzymes involved in this metabolic pathway by CnAβ1 is dependent on mTOR activity. Inhibition of serine and one-carbon metabolism blocks the beneficial effects of CnAβ1. CnAβ1Δi12 mice show increased cardiac hypertrophy and declined contractility. Conclusions The metabolic reprogramming induced by CnAβ1 redefines the role of calcineurin in the heart and shows for the first time that activation of the serine and one-carbon pathway has beneficial effects on cardiac hypertrophy and function, paving the way for new therapeutic approaches

    Testing sequential quantum measurements: how can maximal knowledge be extracted?

    Get PDF
    The extraction of information from a quantum system unavoidably implies a modification of the measured system itself. It has been demonstrated recently that partial measurements can be carried out in order to extract only a portion of the information encoded in a quantum system, at the cost of inducing a limited amount of disturbance. Here we analyze experimentally the dynamics of sequential partial measurements carried out on a quantum system, focusing on the trade-off between the maximal information extractable and the disturbance. In particular we consider two different regimes of measurement, demonstrating that, by exploiting an adaptive strategy, an optimal trade-off between the two quantities can be found, as observed in a single measurement process. Such experimental result, achieved for two sequential measurements, can be extended to N measurement processes.Comment: 5 pages, 3 figure

    Analyzing three-player quantum games in an EPR type setup

    Get PDF
    We use the formalism of Clifford Geometric Algebra (GA) to develop an analysis of quantum versions of three-player non-cooperative games. The quantum games we explore are played in an Einstein-Podolsky-Rosen (EPR) type setting. In this setting, the players' strategy sets remain identical to the ones in the mixed-strategy version of the classical game that is obtained as a proper subset of the corresponding quantum game. Using GA we investigate the outcome of a realization of the game by players sharing GHZ state, W state, and a mixture of GHZ and W states. As a specific example, we study the game of three-player Prisoners' Dilemma.Comment: 21 pages, 3 figure

    Quantum Communication

    Get PDF
    Quantum communication, and indeed quantum information in general, has changed the way we think about quantum physics. In 1984 and 1991, the first protocol for quantum cryptography and the first application of quantum non-locality, respectively, attracted a diverse field of researchers in theoretical and experimental physics, mathematics and computer science. Since then we have seen a fundamental shift in how we understand information when it is encoded in quantum systems. We review the current state of research and future directions in this new field of science with special emphasis on quantum key distribution and quantum networks.Comment: Submitted version, 8 pg (2 cols) 5 fig
    • …
    corecore