73 research outputs found

    Improving reconstruction of the baryon acoustic peak : the effect of local environment

    Full text link
    Precise measurements of the baryon acoustic oscillation (BAO) scale as a standard ruler in the clustering pattern of large-scale structure is a central goal of current and future galaxy surveys. The BAO peak may be sharpened using the technique of density-field reconstruction, in which the bulk displacements of galaxies are estimated using a Zel'dovitch approximation. We use numerical simulations to demonstrate how the accuracy of this approximation depends strongly on local environment, and how this information may be used to construct an improved BAO measurement through environmental re-weighting and using higher-order perturbation theory. We outline further applications of the displacement field for testing cosmological models.Comment: 13 pages, 14 figure

    Excursion Set Halo Mass Function and Bias in a Stochastic Barrier Model of Ellipsoidal Collapse

    Full text link
    We use the Excursion Set formalism to compute the properties of the halo mass distribution for a stochastic barrier model which encapsulates the main features of the ellipsoidal collapse of dark matter halos. Non-markovian corrections due to the sharp filtering of the linear density field in real space are computed with the path-integral technique introduced by Maggiore & Riotto (2010). Here, we provide a detailed derivation of the results presented in Corasaniti & Achitouv (2011) and extend the mass function analysis to higher redshift. We also derive an analytical expression for the linear halo bias. We find the analytically derived mass function to be in remarkable agreement with N-body simulation data from Tinker et al. (2008) with differences smaller than ~5% over the range of mass probed by the simulations. The excursion set solution from Monte Carlo generated random walks shows the same level of agreement, thus confirming the validity of the path-integral approach for the barrier model considered here. Similarly the analysis of the linear halo bias shows deviations no greater than 20%. Overall these results indicate that the Excursion Set formalism in combination with a realistic modeling of the conditions of halo collapse can provide an accurate description of the halo mass distribution.Comment: 16 pages, 9 figures; companion paper published in PRL 106 (2011) 241302. To appear on PR

    Self-consistency of the Excursion Set Approach

    Full text link
    The excursion set approach provides a framework for predicting how the abundance of dark matter halos depends on the initial conditions. A key ingredient of this formalism comes from the physics of halo formation: the specification of a critical overdensity threshold (barrier) which protohalos must exceed if they are to form bound virialized halos at a later time. Another ingredient is statistical, as it requires the specification of the appropriate statistical ensemble over which to average when making predictions. The excursion set approach explicitly averages over all initial positions, thus implicitly assuming that the appropriate ensemble is that associated with randomly chosen positions in space, rather than special positions such as peaks of the initial density field. Since halos are known to collapse around special positions, it is not clear that the physical and statistical assumptions which underlie the excursion set approach are self-consistent. We argue that they are at least for low mass halos, and illustrate by comparing our excursion set predictions with numerical data from the DEUS simulations.Comment: 5 pages, 2 figure

    Computation of the Halo Mass Function Using Physical Collapse Parameters: Application to Non-Standard Cosmologies

    Full text link
    In this article we compare the halo mass function predicted by the excursion set theory with a drifting diffusive barrier against the results of N-body simulations for several cosmological models. This includes the standard LCDM case for a large range of halo masses, models with different types of primordial non-Gaussianity, and the Ratra-Peebles quintessence model of Dark Energy. We show that in all those cosmological scenarios, the abundance of dark matter halos can be described by a drifting diffusive barrier, where the two parameters describing the barrier have physical content. In the case of the Gaussian LCDM, the statistics are precise enough to actually predict those parameters at different redshifts from the initial conditions. Furthermore, we found that the stochasticity in the barrier is nonnegligible making the simple deterministic spherical collapse model a bad approximation even at very high halo masses. We also show that using the standard excursion set approach with a barrier inspired by peak patches leads to inconsistent predictions of the halo mass function.Comment: 25 pages, 12 figure

    Testing spherical evolution for modelling void abundances

    Get PDF
    We compare analytical predictions of void volume functions to those measured from N-body simulations, detecting voids with the zobov void finder. We push to very small, non-linear voids, below few Mpc radius, by considering the unsampled dark matter density field. We also study the case where voids are identified using haloes. We develop analytical formula for the void abundance of both the excursion set approach and the peaks formalism. These formulas are valid for random walks smoothed with a top-hat filter in real space, with a large class of realistic barrier models. We test the extent to which the spherical evolution approximation, which forms the basis of the analytical predictions, models the highly aspherical voids that occur in the cosmic web, and are found by a watershed-based algorithm such as zobov. We show that the volume function returned by zobov is quite sensitive to the choice of treatment of subvoids, a fact that has not been appreciated previously. For reasonable choices of subvoid exclusion, we find that the Lagrangian density δv of the zobov voids - which is predicted to be a constant δv≈−2.7 in the spherical evolution model - is different from the predicted value, showing substantial scatter and scale dependence. This result applies to voids identified at z=0 with effective radius between 1 and 10 h−1 Mpc. Our analytical approximations are flexible enough to give a good description of the resulting volume function; however, this happens for choices of parameter values that are different from those suggested by the spherical evolution assumption. We conclude that analytical models for voids must move away from the spherical approximation in order to be applied successfully to observations, and we discuss some possible ways forwar

    Natural Language Processing for Financial Regulation

    Full text link
    This article provides an understanding of Natural Language Processing techniques in the framework of financial regulation, more specifically in order to perform semantic matching search between rules and policy when no dataset is available for supervised learning. We outline how to outperform simple pre-trained sentences-transformer models using freely available resources and explain the mathematical concepts behind the key building blocks of Natural Language Processing.Comment: 20 pages, 3 figure
    • …
    corecore