402 research outputs found
Effects of Kapton Sample Cell Windows on the Detection Limit of Smectite: Implications for CheMin on the Mars Science Laboratory Mission
The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CheMin has two different window materials used for sample cells -- Mylar and Kapton. Instrument details are provided elsewhere. Fe/Mg-smectite (e.g., nontronite) has been identified in Gale Crater, the MSL future landing site, by CRISM spectra. While large quantities of phyllosilicate minerals will be easily detected by CheMin, it is important to establish detection limits of such phases to understand capabilities and limitations of the instrument. A previous study indicated that the (001) peak of smectite at 15 Ang was detectable in a mixture of 1 wt.% smectite with olivine when Mylar is the window material for the sample cell. Complications arise when Kapton is the window material because Kapton itself also has a diffraction peak near 15 Ang (6.8 deg 2 Theta). This study presents results of mineral mixtures of smectite and olivine to determine smectite detection limits for Kapton sample cells. Because the intensity and position of the smectite (001) peak depends on the hydration state, we also analyzed mixtures with "hydrated" and "dehydrated"h smectite to examine the effects of hydration state on detection limits
Shrec'16 Track: Retrieval of Human Subjects from Depth Sensor Data
International audienceIn this paper we report the results of the SHREC 2016 contest on "Retrieval of human subjects from depth sensor data". The proposed task was created in order to verify the possibility of retrieving models of query human subjects from single shots of depth sensors, using shape information only. Depth acquisition of different subjects were realized under different illumination conditions, using different clothes and in three different poses. The resulting point clouds of the partial body shape acquisitions were segmented and coupled with the skeleton provided by the OpenNI software and provided to the participants together with derived triangulated meshes. No color information was provided. Retrieval scores of the different methods proposed were estimated on the submitted dissimilarity matrices and the influence of the different acquisition conditions on the algorithms were also analyzed. Results obtained by the participants and by the baseline methods demonstrated that the proposed task is, as expected, quite difficult, especially due the partiality of the shape information and the poor accuracy of the estimated skeleton, but give useful insights on potential strategies that can be applied in similar retrieval procedures and derived practical applications. Categories and Subject Descriptors (according to ACM CCS): I.4.8 [IMAGE PROCESSING AND COMPUTER VISION]: Scene AnalysisâShap
A Study of the Reinforcement Effect of MWCNTs onto Polyimide Flat Sheet Membranes
Polyimides rank among the most heat-resistant polymers and find application in a variety of fields, including transportation, electronics, and membrane technology. The aim of this work is to study the structural, thermal, mechanical, and gas permeation properties of polyimide based nanocomposite membranes in flat sheet configuration. For this purpose, numerous advanced techniques such as atomic force microscopy (AFM), SEM, TEM, TGA, FT-IR, tensile strength, elongation test, and gas permeability measurements were carried out. In particular, BTDAâTDI/MDI (P84) co-polyimide was used as the matrix of the studied membranes, whereas multi-wall carbon nanotubes were employed as filler material at concentrations of up to 5 wt.% All studied films were prepared by the dry-cast process resulting in non-porous films of about 30â50 ÎŒm of thickness. An optimum filler concentration of 2 wt.% was estimated. At this concentration, both thermal and mechanical properties of the prepared membranes were improved, and the highest gas permeability values were also obtained. Finally, gas permeability experiments were carried out at 25, 50, and 100 âŠC with seven different pure gases. The results revealed that the uniform carbon nanotubes dispersion lead to enhanced gas permeation properties
Experimental joint signal-idler quasi-distributions and photon-number statistics for mesoscopic twin beams
Joint signal-idler photoelectron distributions of twin beams containing
several tens of photons per mode have been measured recently. Exploiting a
microscopic quantum theory for joint quasi-distributions in parametric
down-conversion developed earlier we characterize properties of twin beams in
terms of quasi-distributions using experimental data. Negative values as well
as oscillating behaviour in quantum region are characteristic for the
subsequently determined joint signal-idler quasi-distributions of integrated
intensities. Also the conditional and difference photon-number distributions
are shown to be sub-Poissonian and sub-shot-noise, respectively.Comment: 7 pages, 6 figure
Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera
The measurement of photon-number statistics of fields composed of photon
pairs, generated in spontaneous parametric down-conversion and detected by an
intensified CCD camera is described. Final quantum detection efficiencies,
electronic noises, finite numbers of detector pixels, transverse intensity
spatial profiles of the detected beams as well as losses of single photons from
a pair are taken into account in a developed general theory of photon-number
detection. The measured data provided by an iCCD camera with single-photon
detection sensitivity are analyzed along the developed theory. Joint
signal-idler photon-number distributions are recovered using the reconstruction
method based on the principle of maximum likelihood. The range of applicability
of the method is discussed. The reconstructed joint signal-idler photon-number
distribution is compared with that obtained by a method that uses superposition
of signal and noise and minimizes photoelectron entropy. Statistics of the
reconstructed fields are identified to be multi-mode Gaussian. Elements of the
measured as well as the reconstructed joint signal-idler photon-number
distributions violate classical inequalities. Sub-shot-noise correlations in
the difference of the signal and idler photon numbers as well as partial
suppression of odd elements in the distribution of the sum of signal and idler
photon numbers are observed.Comment: 14 pages, 14 figure
Generating droplets in two-dimensional Ising spin glasses by using matching algorithms
We study the behavior of droplets for two dimensional Ising spin glasses with
Gaussian interactions. We use an exact matching algorithm which enables study
of systems with linear dimension L up to 240, which is larger than is possible
with other approaches. But the method only allows certain classes of droplets
to be generated. We study single-bond, cross and a category of fixed volume
droplets as well as first excitations. By comparison with similar or equivalent
droplets generated in previous works, the advantages but also the limitations
of this approach are revealed. In particular we have studied the scaling
behavior of the droplet energies and droplet sizes. In most cases, a crossover
of the data can be observed such that for large sizes the behavior is
compatible with the one-exponent scenario of the droplet theory. Only for the
case of first excitations, no clear conclusion can be reached, probably because
even with the matching approach the accessible system sizes are still too
small.Comment: 11 pages, 16 figures, revte
Spectral, Compositional, and Physical Properties of the Upper Murray Formation and Vera Rubin Ridge, Gale Crater, Mars
During 2018 and 2019, the Mars Science Laboratory Curiosity rover investigated the chemistry, morphology, and stratigraphy of Vera Rubin ridge (VRR). Using orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars, scientists attributed the strong 860 nm signal associated with VRR to the presence of red crystalline hematite. However, Mastcam multispectral data and CheMin Xâray diffraction (XRD) measurements show that the depth of the 860 nm absorption is negatively correlated with the abundance of red crystalline hematite, suggesting that other mineralogical or physical parameters are also controlling the 860 nm absorption. Here, we examine Mastcam and ChemCam passive reflectance spectra from VRR and other locations to link the depth, position, and presence or absence of ironârelated mineralogic absorption features to the XRDâderived rock mineralogy. Correlating CheMin mineralogy to spectral parameters showed that the ~860 nm absorption has a strong positive correlation with the abundance of ferric phyllosilicates. New laboratory reflectance measurements of powdered mineral mixtures can reproduce trends found in Gale crater. We hypothesize that variations in the 860 nm absorption feature in Mastcam and ChemCam observations of VRR materials are a result of three factors: (1) variations in ferric phyllosilicate abundance due to its ~800â1,000 nm absorption; (2) variations in clinopyroxene abundance because of its band maximum at ~860 nm; and (3) the presence of red crystalline hematite because of its absorption centered at 860 nm. We also show that relatively small changes in Caâsulfate abundance is one potential cause of the erosional resistance and geomorphic expression of VRR
Mineralogy of Vera Rubin Ridge in Gale Crater from the Mars Science Laboratory CheMin instrument
Gale crater was selected as the landing site for the Mars Science Laboratory Curiosity rover because of orbital evidence for a variety of secondary minerals in the lower slopes of Aeolis Mons (aka Mount Sharp) that indicate changes in aqueous conditions over time. Distinct units demonstrate orbital spectral signatures of hematite, phyllosilicate (smectite), and sulfate minerals, which suggest that ancient aqueous environments in Gale crater varied in oxidation potential, pH, and water activity. Vera Rubin ridge (VRR) is the first of these units identified from orbit to have been studied by Curiosity. Orbital near-infrared data from VRR show a strong band at 860 nm indicative of hematite. Before Curiosity arrived at VRR, the hypotheses to explain the formation of hematite included (1) precipitation at a redox interface where aqueous Fe2+ was oxidized to Fe3+, and (2) acidic alteration of olivine in oxic fluids. Studying the composition and sedimentology of the rocks on VRR allow us to test and refine these hypotheses and flesh out the depositional and diagenetic history of the ridge. Here, we focus on the mineralogical results of four rock powders drilled from and immediately below VRR as determined by CheMin
Ground Truth Mineralogy vs. Orbital Observations at the Bagnold Dune Field
The Mars Science Laboratory (MSL) rover, Curiosity, is analyzing rock and sediments in Gale crater to provide in situ sedimentological, geochemical, and mineralogical assessments of the crater's geologic history. Curiosity's recent traverse through an active, basaltic eolian deposit, informally named the Bagnold Dunes, provided the opportunity for a multi-instrument investigation of the dune field
- âŠ