282 research outputs found
Conservation laws, exact travelling waves and modulation instability for an extended nonlinear Schr\"odinger equation
We study various properties of solutions of an extended nonlinear
Schr\"{o}dinger (ENLS) equation, which arises in the context of geometric
evolution problems -- including vortex filament dynamics -- and governs
propagation of short pulses in optical fibers and nonlinear metamaterials. For
the periodic initial-boundary value problem, we derive conservation laws
satisfied by local in time, weak (distributional) solutions, and
establish global existence of such weak solutions. The derivation is obtained
by a regularization scheme under a balance condition on the coefficients of the
linear and nonlinear terms -- namely, the Hirota limit of the considered ENLS
model. Next, we investigate conditions for the existence of traveling wave
solutions, focusing on the case of bright and dark solitons. The balance
condition on the coefficients is found to be essential for the existence of
exact analytical soliton solutions; furthermore, we obtain conditions which
define parameter regimes for the existence of traveling solitons for various
linear dispersion strengths. Finally, we study the modulational instability of
plane waves of the ENLS equation, and identify important differences between
the ENLS case and the corresponding NLS counterpart. The analytical results are
corroborated by numerical simulations, which reveal notable differences between
the bright and the dark soliton propagation dynamics, and are in excellent
agreement with the analytical predictions of the modulation instability
analysis.Comment: 27 pages, 5 figures. To be published in Journal of Physics A:
Mathematical and Theoretica
Large-scale solar wind flow around Saturn's nonaxisymmetric magnetosphere
The interaction between the solar wind and a magnetosphere is fundamental to
the dynamics of a planetary system. Here, we address fundamental questions on
the large-scale magnetosheath flow around Saturn using a 3D magnetohydrodynamic
(MHD) simulation. We find Saturn's polar-flattened magnetosphere to channel
~20% more flow over the poles than around the flanks at the terminator.
Further, we decompose the MHD forces responsible for accelerating the
magnetosheath plasma to find the plasma pressure gradient as the dominant
driver. This is by virtue of a high-beta magnetosheath, and in turn, the
high-MA bow shock. Together with long-term magnetosheath data by the Cassini
spacecraft, we present evidence of how nonaxisymmetry substantially alters the
conditions further downstream at the magnetopause, crucial for understanding
solar wind-magnetosphere interactions such as reconnection and shear
flow-driven instabilities. We anticipate our results to provide a more accurate
insight into the global conditions upstream of Saturn and the outer planets.Comment: Accepted for publication in Journal of Geophysical Journal: Space
Physic
The dynamical playground of a higher-order cubic Ginzburg-Landau equation: from orbital connections and limit cycles to invariant tori and the onset of chaos
The dynamical behavior of a higher-order cubic Ginzburg-Landau equation is
found to include a wide range of scenarios due to the interplay of higher-order
physically relevant terms. We find that the competition between the third-order
dispersion and stimulated Raman scattering effects, gives rise to rich
dynamics: this extends from Poincar\'{e}-Bendixson--type scenarios, in the
sense that bounded solutions may converge either to distinct equilibria via
orbital connections, or space-time periodic solutions, to the emergence of
almost periodic and chaotic behavior. One of our main results is that the
third-order dispersion has a dominant role in the development of such complex
dynamics, since it can be chiefly responsible (i.e., even in the absence of the
other higher-order effects) for the existence of the periodic, quasi-periodic
and chaotic spatiotemporal structures. Suitable low-dimensional phase space
diagnostics are devised and used to illustrate the different possibilities and
identify their respective parametric intervals over multiple parameters of the
model.Comment: 11 pages, 9 figures. To appear in Physical Review
Beating dark-dark solitons in Bose-Einstein condensates
Motivated by recent experimental results, we study beating dark-dark solitons
as a prototypical coherent structure that emerges in two-component
Bose-Einstein condensates. We showcase their connection to dark- bright
solitons via SO(2) rotation, and infer from it both their intrinsic beating
frequency and their frequency of oscillation inside a parabolic trap. We
identify them as exact periodic orbits in the Manakov limit of equal inter- and
intra-species nonlinearity strengths with and without the trap and showcase the
persistence of such states upon weak deviations from this limit. We also
consider large deviations from the Manakov limit illustrating that this
breathing state may be broken apart into dark-antidark soliton states. Finally,
we consider the dynamics and interactions of two beating dark-dark solitons in
the absence and in the presence of the trap, inferring their typically
repulsive interaction.Comment: 13 pages, 14 figure
Magnetism, X-rays, and Accretion Rates in WD 1145+017 and other Polluted White Dwarf Systems
This paper reports circular spectropolarimetry and X-ray observations of
several polluted white dwarfs including WD 1145+017, with the aim to constrain
the behavior of disk material and instantaneous accretion rates in these
evolved planetary systems. Two stars with previously observed Zeeman splitting,
WD 0322-019 and WD 2105-820, are detected above 5 sigma and > 1 kG, while
WD 1145+017, WD 1929+011, and WD 2326+049 yield (null) detections below this
minimum level of confidence. For these latter three stars, high-resolution
spectra and atmospheric modeling are used to obtain limits on magnetic field
strengths via the absence of Zeeman splitting, finding B* < 20 kG based on data
with resolving power R near 40 000. An analytical framework is presented for
bulk Earth composition material falling onto the magnetic polar regions of
white dwarfs, where X-rays and cyclotron radiation may contribute to accretion
luminosity. This analysis is applied to X-ray data for WD 1145+017, WD
1729+371, and WD 2326+049, and the upper bound count rates are modeled with
spectra for a range of plasma kT = 1 - 10 keV in both the magnetic and
non-magnetic accretion regimes. The results for all three stars are consistent
with a typical dusty white dwarf in a steady-state at 1e8 - 1e9 g/s. In
particular, the non-magnetic limits for WD 1145+017 are found to be well below
previous estimates of up to 1e12 g/s, and likely below 1e10 g/s, thus
suggesting the star-disk system may be average in its evolutionary state, and
only special in viewing geometry.Comment: 14 pages, 7 figures, 3 tables; accepted to MNRA
Stationary states of a nonlinear Schrödinger lattice with a harmonic trap
We study a discrete nonlinear Schrödinger lattice with a parabolic trapping potential. The model, describing, e.g., an array of repulsive Bose-Einstein condensate droplets confined in the wells of an optical lattice, is analytically and numerically investigated. Starting from the linear limit of the problem, we use global bifurcation theory to rigorously prove that – in the discrete regime – all linear states lead to nonlinear generalizations thereof, which assume the form of a chain of discrete dark solitons (as the density increases). The stability of the ensuing nonlinear states is studied and it is found that the ground state is stable, while the excited states feature a chain of stability/instability bands. We illustrate the mechanisms under which discreteness destabilizes the dark-soliton configurations, which become stable only in the continuum regime. Continuation from the anti-continuum limit is also considered, and a rich bifurcation structure is revealed
Statics and dynamics of atomic dark-bright solitons in the presence of delta-like impurities
Adopting a mean-field description for a two-component atomic Bose-Einstein
condensate, we study the stat- ics and dynamics of dark-bright solitons in the
presence of localized impurities. We use adiabatic perturbation theory to
derive an equation of motion for the dark-bright soliton center. We show that,
counter-intuitively, an attractive (repulsive) delta-like impurity, acting
solely on the bright soliton component, induces an effective localized barrier
(well) in the effective potential felt by the soliton; this way, dark-bright
solitons are reflected from (transmitted through) attractive (repulsive)
impurities. Our analytical results for the small-amplitude oscil- lations of
solitons are found to be in good agreement with results obtained via a
Bogoliubov-de Gennes analysis and direct numerical simulations.Comment: 11 pages, 11 figures, to appear in Phys. Rev.
Cassini observations of ion and electron beams at Saturn and their relationship to infrared auroral arcs
We present Cassini Visual and Infrared Mapping Spectrometer observations of infrared auroral emissions from the noon sector of Saturn's ionosphere revealing multiple intense auroral arcs separated by dark regions poleward of the main oval. The arcs are interpreted as the ionospheric signatures of bursts of reconnection occurring at the dayside magnetopause. The auroral arcs were associated with upward field-aligned currents, the magnetic signatures of which were detected by Cassini at high planetary latitudes. Magnetic field and particle observations in the adjacent downward current regions showed upward bursts of 100–360 keV light ions in addition to energetic (hundreds of keV) electrons, which may have been scattered from upward accelerated beams carrying the downward currents. Broadband, upward propagating whistler waves were detected simultaneously with the ion beams. The acceleration of the light ions from low altitudes is attributed to wave-particle interactions in the downward current regions. Energetic (600 keV) oxygen ions were also detected, suggesting the presence of ambient oxygen at altitudes within the acceleration region. These simultaneous in situ and remote observations reveal the highly energetic magnetospheric dynamics driving some of Saturn's unusual auroral features. This is the first in situ identification of transient reconnection events at regions magnetically conjugate to Saturn's magnetopause
- …