282 research outputs found

    Conservation laws, exact travelling waves and modulation instability for an extended nonlinear Schr\"odinger equation

    Full text link
    We study various properties of solutions of an extended nonlinear Schr\"{o}dinger (ENLS) equation, which arises in the context of geometric evolution problems -- including vortex filament dynamics -- and governs propagation of short pulses in optical fibers and nonlinear metamaterials. For the periodic initial-boundary value problem, we derive conservation laws satisfied by local in time, weak H2H^2 (distributional) solutions, and establish global existence of such weak solutions. The derivation is obtained by a regularization scheme under a balance condition on the coefficients of the linear and nonlinear terms -- namely, the Hirota limit of the considered ENLS model. Next, we investigate conditions for the existence of traveling wave solutions, focusing on the case of bright and dark solitons. The balance condition on the coefficients is found to be essential for the existence of exact analytical soliton solutions; furthermore, we obtain conditions which define parameter regimes for the existence of traveling solitons for various linear dispersion strengths. Finally, we study the modulational instability of plane waves of the ENLS equation, and identify important differences between the ENLS case and the corresponding NLS counterpart. The analytical results are corroborated by numerical simulations, which reveal notable differences between the bright and the dark soliton propagation dynamics, and are in excellent agreement with the analytical predictions of the modulation instability analysis.Comment: 27 pages, 5 figures. To be published in Journal of Physics A: Mathematical and Theoretica

    Large-scale solar wind flow around Saturn's nonaxisymmetric magnetosphere

    Get PDF
    The interaction between the solar wind and a magnetosphere is fundamental to the dynamics of a planetary system. Here, we address fundamental questions on the large-scale magnetosheath flow around Saturn using a 3D magnetohydrodynamic (MHD) simulation. We find Saturn's polar-flattened magnetosphere to channel ~20% more flow over the poles than around the flanks at the terminator. Further, we decompose the MHD forces responsible for accelerating the magnetosheath plasma to find the plasma pressure gradient as the dominant driver. This is by virtue of a high-beta magnetosheath, and in turn, the high-MA bow shock. Together with long-term magnetosheath data by the Cassini spacecraft, we present evidence of how nonaxisymmetry substantially alters the conditions further downstream at the magnetopause, crucial for understanding solar wind-magnetosphere interactions such as reconnection and shear flow-driven instabilities. We anticipate our results to provide a more accurate insight into the global conditions upstream of Saturn and the outer planets.Comment: Accepted for publication in Journal of Geophysical Journal: Space Physic

    The dynamical playground of a higher-order cubic Ginzburg-Landau equation: from orbital connections and limit cycles to invariant tori and the onset of chaos

    Full text link
    The dynamical behavior of a higher-order cubic Ginzburg-Landau equation is found to include a wide range of scenarios due to the interplay of higher-order physically relevant terms. We find that the competition between the third-order dispersion and stimulated Raman scattering effects, gives rise to rich dynamics: this extends from Poincar\'{e}-Bendixson--type scenarios, in the sense that bounded solutions may converge either to distinct equilibria via orbital connections, or space-time periodic solutions, to the emergence of almost periodic and chaotic behavior. One of our main results is that the third-order dispersion has a dominant role in the development of such complex dynamics, since it can be chiefly responsible (i.e., even in the absence of the other higher-order effects) for the existence of the periodic, quasi-periodic and chaotic spatiotemporal structures. Suitable low-dimensional phase space diagnostics are devised and used to illustrate the different possibilities and identify their respective parametric intervals over multiple parameters of the model.Comment: 11 pages, 9 figures. To appear in Physical Review

    Beating dark-dark solitons in Bose-Einstein condensates

    Get PDF
    Motivated by recent experimental results, we study beating dark-dark solitons as a prototypical coherent structure that emerges in two-component Bose-Einstein condensates. We showcase their connection to dark- bright solitons via SO(2) rotation, and infer from it both their intrinsic beating frequency and their frequency of oscillation inside a parabolic trap. We identify them as exact periodic orbits in the Manakov limit of equal inter- and intra-species nonlinearity strengths with and without the trap and showcase the persistence of such states upon weak deviations from this limit. We also consider large deviations from the Manakov limit illustrating that this breathing state may be broken apart into dark-antidark soliton states. Finally, we consider the dynamics and interactions of two beating dark-dark solitons in the absence and in the presence of the trap, inferring their typically repulsive interaction.Comment: 13 pages, 14 figure

    Magnetism, X-rays, and Accretion Rates in WD 1145+017 and other Polluted White Dwarf Systems

    Full text link
    This paper reports circular spectropolarimetry and X-ray observations of several polluted white dwarfs including WD 1145+017, with the aim to constrain the behavior of disk material and instantaneous accretion rates in these evolved planetary systems. Two stars with previously observed Zeeman splitting, WD 0322-019 and WD 2105-820, are detected above 5 sigma and > 1 kG, while WD 1145+017, WD 1929+011, and WD 2326+049 yield (null) detections below this minimum level of confidence. For these latter three stars, high-resolution spectra and atmospheric modeling are used to obtain limits on magnetic field strengths via the absence of Zeeman splitting, finding B* < 20 kG based on data with resolving power R near 40 000. An analytical framework is presented for bulk Earth composition material falling onto the magnetic polar regions of white dwarfs, where X-rays and cyclotron radiation may contribute to accretion luminosity. This analysis is applied to X-ray data for WD 1145+017, WD 1729+371, and WD 2326+049, and the upper bound count rates are modeled with spectra for a range of plasma kT = 1 - 10 keV in both the magnetic and non-magnetic accretion regimes. The results for all three stars are consistent with a typical dusty white dwarf in a steady-state at 1e8 - 1e9 g/s. In particular, the non-magnetic limits for WD 1145+017 are found to be well below previous estimates of up to 1e12 g/s, and likely below 1e10 g/s, thus suggesting the star-disk system may be average in its evolutionary state, and only special in viewing geometry.Comment: 14 pages, 7 figures, 3 tables; accepted to MNRA

    Stationary states of a nonlinear Schrödinger lattice with a harmonic trap

    Get PDF
    We study a discrete nonlinear Schrödinger lattice with a parabolic trapping potential. The model, describing, e.g., an array of repulsive Bose-Einstein condensate droplets confined in the wells of an optical lattice, is analytically and numerically investigated. Starting from the linear limit of the problem, we use global bifurcation theory to rigorously prove that – in the discrete regime – all linear states lead to nonlinear generalizations thereof, which assume the form of a chain of discrete dark solitons (as the density increases). The stability of the ensuing nonlinear states is studied and it is found that the ground state is stable, while the excited states feature a chain of stability/instability bands. We illustrate the mechanisms under which discreteness destabilizes the dark-soliton configurations, which become stable only in the continuum regime. Continuation from the anti-continuum limit is also considered, and a rich bifurcation structure is revealed

    Statics and dynamics of atomic dark-bright solitons in the presence of delta-like impurities

    Full text link
    Adopting a mean-field description for a two-component atomic Bose-Einstein condensate, we study the stat- ics and dynamics of dark-bright solitons in the presence of localized impurities. We use adiabatic perturbation theory to derive an equation of motion for the dark-bright soliton center. We show that, counter-intuitively, an attractive (repulsive) delta-like impurity, acting solely on the bright soliton component, induces an effective localized barrier (well) in the effective potential felt by the soliton; this way, dark-bright solitons are reflected from (transmitted through) attractive (repulsive) impurities. Our analytical results for the small-amplitude oscil- lations of solitons are found to be in good agreement with results obtained via a Bogoliubov-de Gennes analysis and direct numerical simulations.Comment: 11 pages, 11 figures, to appear in Phys. Rev.

    Cassini observations of ion and electron beams at Saturn and their relationship to infrared auroral arcs

    Get PDF
    We present Cassini Visual and Infrared Mapping Spectrometer observations of infrared auroral emissions from the noon sector of Saturn's ionosphere revealing multiple intense auroral arcs separated by dark regions poleward of the main oval. The arcs are interpreted as the ionospheric signatures of bursts of reconnection occurring at the dayside magnetopause. The auroral arcs were associated with upward field-aligned currents, the magnetic signatures of which were detected by Cassini at high planetary latitudes. Magnetic field and particle observations in the adjacent downward current regions showed upward bursts of 100–360 keV light ions in addition to energetic (hundreds of keV) electrons, which may have been scattered from upward accelerated beams carrying the downward currents. Broadband, upward propagating whistler waves were detected simultaneously with the ion beams. The acceleration of the light ions from low altitudes is attributed to wave-particle interactions in the downward current regions. Energetic (600 keV) oxygen ions were also detected, suggesting the presence of ambient oxygen at altitudes within the acceleration region. These simultaneous in situ and remote observations reveal the highly energetic magnetospheric dynamics driving some of Saturn's unusual auroral features. This is the first in situ identification of transient reconnection events at regions magnetically conjugate to Saturn's magnetopause
    • …
    corecore