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Motivated by recent experimental results, we study beating dark-dark solitons as a prototypical coherent
structure that emerges in two-component Bose-Einstein condensates. We showcase their connection to dark-
bright solitons via SO(2) rotation, and infer from it both their intrinsic beating frequency and their frequency of
oscillation inside a parabolic trap. We identify them as exact periodic orbits in the Manakov limit of equal inter-
and intra-species nonlinearity strengths with and without the trap and showcase the persistence of such states
upon weak deviations from this limit. We also consider large deviations from the Manakov limit illustrating that
this breathing state may be broken apart into dark-antidark soliton states. Finally, we consider the dynamics
and interactions of two beating dark-dark solitons in the absence and in the presence of the trap, inferring their
typically repulsive interaction.

I. INTRODUCTION

One of the principal themes of study in the emerging field of atomic Bose-Einstein condensates (BECs) is the examination of
the coherent structures that arise in them [1–4]. When such explorations started over a decade ago [5–9], they were considerably
hindered by either geometric or thermal effects, which were detrimental towards the lifetime of dark solitons and vortices that
can be formed in repulsive BECs. Yet, the newer generations of experiments have enabled considerable strides towards the
observation of dynamics and interactions of such nonlinear waveforms [10–15].

In addition to the above context of single-component BECs, soliton and vortex states may also arise in multi-component
condensates, such as the two-component pseudo-spinor BECs, or the three and higher component spinor BECs [1, 2, 4]. One
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FIG. 1: (Color online) Prototypical experimental images of dark-bright and dark-dark solitons in a two-component BEC. The two components
are vertically offset for separate imaging. All dynamics occur with vertically overlapped components before the imaging procedure. Clear
examples of dark-bright and dark-dark solitons are marked as DB and DD respectively. In the fourth panel, the red (thick) line shows a radially
integrated cross section of the upper component in the boxed region of the third panel, while the black (thin) line shows the cross section of
the lower component. The |F,mF ⟩ hyperfine states used for these images are given to the right of each component.
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of the prototypical examples of a soliton state in these settings is the so-called dark-bright (DB) soliton [16, 17]. Experimental
images of DB solitons in a two-component BEC are presented in Fig. 1. The BEC in this figure is comprised of two different
hyperfine states of 87Rb, and the solitons are generated by subjecting the BEC to inter-component counterflow; details of this
technique are described in Refs. [18, 19]. In each panel, the atom clouds of the two components are vertically offset for
imaging only, while all the dynamics leading to the soliton formation occurs in overlapped clouds. Clear examples of dark-
bright solitons are marked as “DB” in the figure and they consist of a dark soliton in one component that is coupled to a bright
soliton in the second component. These structures can be thought of as “symbiotic” (or even parasitic) states because their
bright component cannot be supported alone in the case of repulsive interactions [3]; in fact, the bright soliton is only sustained
because of the presence of its dark-counterpart, which operates as an external trapping potential. Although dark-bright solitons
(and even a prototypical interaction thereof) were first observed some time ago in the context of nonlinear optics [20, 21], their
observation in recent atomic BECs experiments [10] triggered a sizeable burst of research activity centered around them. Topics
of study included (but were not limited to) multi-DB soliton solutions from the viewpoint of integrable systems [22], numerical
study of DB soliton interactions [23], discrete DB solitons [24], experimental realizations of DB soliton trains [18], DB soliton
oscillations and interactions [25, 26], as well as interaction of DB solitons with localized impurities [27].

Recently, a “cousin” of these DB solitons, namely the dark-dark (DD) soliton — which involves two dark solitons but with
potentially a breathing oscillation between their densities was also experimentally observed [19]. Pertinent examples are marked
as “DD” in Fig. 1. These solitons show interesting dynamics in which they periodically change their form, from the one shown
in the first panel to the one shown in the second panel, and back (note the order of the hump/notch features in each of the DD’s
component; see also Fig. 5 below). Such “beating dark-dark solitons” are expected to emerge in the integrable two-component
(so-called Manakov) limit of the relevant mean-field theoretic models [28] and were, in fact, earlier observed in numerical
experiments involving the dragging of defects through the binary condensates [29].

The current experimental advances, such as the ones leading to the soliton images of Fig. 1, motivate the present theoretical
study, in which we revisit DD soliton states at the integrable Manakov limit and extract information from their connection to
the DB solitons (section II). These results are corroborated by the identification of such single DD soliton states, as genuine
periodic orbits of the Manakov case (with and without a trap) and the study of their stability, internal modes and associated
near-equilibrium dynamics (section III). In addition, we examine the dynamics of individual such solitons, upon departure from
the integrable limit (section IV). Experimentally it has also become possible to generate several solitons, and even solitons of
different types, in a single BEC – see, e.g., the third panel of Fig. 1 which demonstrates the coexistence of dark-bright and
dark-dark solitons. Although the experimentally exploited counterflow between the two components is beyond the scope of
our current analysis, these experimental findings motivate our investigation of the interactions between two dark-dark solitons
(section V). Finally, conclusions of our study, as well as a number of interesting perspectives for future work, are also presented
(section VI).

II. DARK-BRIGHT AND DARK-DARK SOLITONS: THEORETICAL BACKGROUND

We consider a two-component elongated (along the x-direction) repulsive BEC, composed of two different hyperfine states of
the same alkali isotope. In the case of a highly anisotropic trap (i.e., if the longitudinal and transverse trapping frequencies are
such that ωx ≪ ω⊥), this system can be described by two coupled Gross-Pitaevskii equations (GPEs) of the form [1]:

i~∂tψj =

(
− ~2

2m
∂2xψj + V (x)− µj +

2∑
k=1

gjk|ψk|2
)
ψj . (1)

Here, ψj(x, t) (j = 1, 2) denote the mean-field wave functions of the two components (normalized to the numbers of atoms
Nj =

∫ +∞
−∞ |ψj |2dx), m is the atomic mass, and µj are the chemical potentials; furthermore, gjk = 2~ω⊥ajk are the effective

one-dimensional (1D) coupling constants, ajk denote the three s-wave scattering lengths (note that a12 = a21) which account
for collisions between atoms belonging to the same (ajj) or different (ajk, j ̸= k) species, while V (x) = (1/2)mω2

xx
2 is the

external trapping potential.
Let us now assume that the two-component BEC under consideration consists of two different hyperfine states of 87Rb, such

as the states |1,−1⟩ and |2, 1⟩ used in the experiment of Ref. [30], or the states |1,−1⟩ and |2,−2⟩ used in the experiments of
Refs. [18, 19, 25]. In the first case the scattering lengths take the values a11 = 100.4a0, a12 = 97.66a0 and a22 = 95.00a0,
while in the second case the respective values are a11 = 100.4a0, a12 = 98.98a0 and a22 = 98.98a0 (where a0 is the Bohr
radius). In either case, it is clear that the scattering lengths take approximately the same values, say aij ≈ a. This way, measuring
the densities |ψj |2, length, time and energy in units of 2a, a⊥ =

√
~/ω⊥, ω−1

⊥ and ~ω⊥, respectively, we may cast Eqs. (1) into
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the following dimensionless form,

i∂tu1 = −1

2
∂2xu1 + V (x)u1 + (|u1|2 + |u2|2 − µ)u1, (2)

i∂tu2 = −1

2
∂2xu2 + V (x)u2 + (|u1|2 + |u2|2 − µ)u2, (3)

where we have also assumed that the chemical potentials characterizing each component are equal. Note that the potential in
Eqs. (2)-(3) is now given by V (x) = (1/2)Ω2x2, where Ω = ωx/ω⊥ is a natural small parameter of the system.

The above system of Eqs. (2)-(3) is invariant under SU(2) rotations [28]. In particular, let us first recall that a general matrix
element of SU(2) takes the form

U =

(
α −β∗

β α∗

)
,

where α and β are complex constants such that |α|2 + |β|2 = 1. Then, it can be shown that if (u1, u2)
T are solutions of

Eqs. (2)-(3), then, (
u′1
u′2

)
≡ U

(
u1
u2

)
=

(
αu1 − β∗u2
βu1 + α∗u2

)
,

are also solutions of Eqs. (2)-(3). This suggests that we may start from the exact dark-bright (DB) soliton solution (which exists
in the absence of the potential) and, derive the beating dark-dark (DD) soliton solution. More specifically, in the absence of the
external potential (V (x) = 0), and for the boundary conditions |u1|2 → µ and |u2|2 → 0 as |x| → ∞, Eqs. (2)-(3) possess an
exact analytical single DB soliton solution of the following form:

u1(x, t) =
√
µ{cosϕ tanh ξ + i sinϕ}, (4)

u2(x, t) = η sech ξ exp{ikx+ iθ(t)}, (5)

where ξ = D(x−x0(t)), ϕ is the dark soliton’s phase angle, cosϕ and η represent the amplitude of the dark and bright solitons,
and D and x0(t) are associated with the inverse width and the center position of the DB soliton. Furthermore, k = D tanϕ and
θ(t) are the (constant) wavenumber and phase of the bright soliton, respectively. The above parameters of the DB soliton are
connected through the following equations:

D2 = µ cos2 ϕ− η2, (6)
ẋ0 = k = D tanϕ, (7)

θ̇ =
1

2

(
D2 − k2

)
, (8)

with ẋ0 and θ̇ denoting the DB soliton velocity and angular frequency, respectively (overdots denote time derivatives). Thus,
the DB soliton (4), (5) is characterized by three free parameters (seven parameters µ, ϕ, η, k, D, ẋ0, θ̇ and four constraints
(6)-(8)). Notice that the amplitude η of the bright soliton, the chemical potential µ of the dark soliton, as well as the (inverse)
width parameter D of the DB soliton are connected to the number of atoms NB of the bright soliton by means of the following
equation:

NB ≡
∫
R
|u2|2dx =

2
√
µη2

D
. (9)

According to the above arguments, one may start from the DB soliton and construct SU(2) rotated solutions, in the following
form:

u1(x, t) = α
√
µ{cosϕ tanh ξ + i sinϕ} − β∗η sech ξ exp{ikx+ iθ(t)}, (10)

u2(x, t) = β
√
µ{cosϕ tanh ξ + i sinϕ}+ α∗η sech ξ exp{ikx+ iθ(t)}. (11)

With the additional four parameters α, β ∈ C and the constraint |α|2 + |β|2 = 1, the solution (10)-(11) is characterized by six
free parameters. Introducing a new parameter c, the velocity of the background fluid, another solution can be constructed from
Eqs. (10)-(11) via a Galilean boost: exp[i(cx− c2t/2)]u1,2(x− ct, t). Thus, in the most general case, this DD soliton solution
is characterized by seven free parameters. One natural set of parameters can be found from the far-field, |x| → ∞ behavior
consisting of two densities, an overall fluid velocity, and four phases.
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Due to Galilean invariance and phase invariance, u′j(x, t) = eiφjuj(x, t), we will assume, without loss of generality, that
the background is at rest (c = 0) and focus, more specifically, on the case of the SO(2) rotated DB soliton. In this case, the
corresponding orthogonal matrix is given by:

U =

(
cos(χ) − sin(χ)
sin(χ) cos(χ)

)
, (12)

where χ is an arbitrary angle. This way, the relevant SO(2) rotated soliton solution takes the form:

u1(x, t) = cos(χ)
√
µ{cosϕ tanh(D(x− x0(t))) + i sinϕ} − sin(χ)ηsech(D(x− x0(t))) exp{ikx+ iθ(t)}, (13)

u2(x, t) = sin(χ)
√
µ{cosϕ tanh(D(x− x0(t))) + i sinϕ}+ cos(χ)ηsech(D(x− x0(t))) exp{ikx+ iθ(t)}, (14)

The solution (13)-(14) is a DD soliton solution characterized by 4 free parameters. The asymptotics of this solution are |u1|2 →
µ cos2(χ) and |u2|2 → µ sin2(χ) as |x| → ∞. The densities of the above dark solitons read:

n1 ≡ |u1|2 = µ cos2(χ)− (µ cos2(χ) cos2 ϕ− η2 sin2(χ))sech2ξ

− √
µη sin(2χ) {sinϕ sin[kx+ θ(t)] + cosϕ cos[kx+ θ(t)] tanh ξ} sechξ, (15)

n2 ≡ |u2|2 = µ sin2(χ)− (µ sin2(χ) cos2 ϕ− η2 cos2(χ))sech2ξ

+
√
µη sin(2χ) {sinϕ sin[kx+ θ(t)] + cosϕ cos[kx+ θ(t)] tanh ξ} sechξ, (16)

while the total density ntot of the DD soliton is given by:

ntot = n1 + n2 = µ−D2sech2ξ. (17)

Notice that the total density of the DD soliton is time-independent and has the form of a dark soliton density of depth D2 on top
of a background density µ. The above density is, in fact, identical to the density of the DB soliton; this is due to the fact that
under SO(2) rotation the total density, as well as all other conserved quantities of the system, remain unchanged. This will be
particularly important when considering the motion of the DD soliton in a trap — see below.

On the other hand, one may consider the individual dark soliton densities, n1 and n2, across the trajectory of the DD soliton,
i.e., for ξ = 0: in such a case, x = x0(t) = kt and the densities read:

n1(ξ = 0) = µ cos2(χ) sin2 ϕ+ η2 sin2(χ)

− √
µη sin(2χ) sinϕ sin

[
1

2
(k2 +D2)t

]
, (18)

n2(ξ = 0) = µ sin2(χ) sin2 ϕ+ η2 cos2(χ)

+
√
µη sin(2χ) sinϕ sin

[
1

2
(k2 +D2)t

]
. (19)

It is clear that n1,2(ξ = 0) are periodic functions of time; the relevant angular frequency (which constitutes the internal beating
frequency of the DD soliton) is given by:

ω0 =
1

2
(k2 +D2) =

1

2
(µ− η2 sec2 ϕ), (20)

where we have also used Eq. (6). The frequency ω0 is bounded by two limiting values. First, in the case η → 0, the beating
DD soliton becomes a regular DD soliton, characterized by a width D =

√
µ cosϕ and a velocity k =

√
µ sinϕ; in this

case, ω0 → (1/2)µ. Second, in the limiting case D → 0, the beating DD soliton is reduced to a plane wave; in this case,
ω0 → (1/2)k2. In other words, the intrinsic oscillation frequency take values in the range:

1

2
k2 < ω0 <

1

2
µ. (21)

III. DARK-DARK SOLITONS AS PERIODIC ORBITS IN THE MANAKOV MODEL

In this section, we analyze the existence, stability and dynamics of single beating DD solitons in a trap of the form V (x) =
1
2Ω

2x2, considering them as periodic orbits. In the presence of the trap, the dynamics of the center of mass x0(t) of the beating
DD soliton is still described by the dynamics of the original (unrotated) DB soliton center x0. This is due to the fact that the
GPEs (2)-(3) are invariant under SO(2) rotations even in the presence of V (x), and so are all conserved quantities of the system,
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FIG. 2: Left panel: Profiles and densities of the beating dark-dark soliton solution with Ω = 0, ω0 = 0.5 and µ = 1.5 at t = 0. Right panel:
Floquet multipliers spectrum for the dark-dark soliton displayed in the left panel.

such as the total energy. Since the derivation of the equation of motion for the DB soliton center x0 in Ref. [16] was relying on
the change of energy (due to the presence of the trap), it is clear that the evolution of the beating DD soliton center follows the
same dynamics: it performs a harmonic oscillation in the trap according to the equation ẍ0 + ω2

oscx0 = 0, where the oscillation
frequency ωosc is given by [16]:

ω2
osc = Ω2

(
1

2
− r

8
√

1 + ( r4 )
2

)
(22)

where r = NB√
µ is a measure of the ratio of the number of atoms in the bright and dark soliton component. In order to compute

the soliton profile and determine its stability, we consider the solution of Eqs. (2)-(3), with g11 = g22 = g12 = 1, as a Fourier
series expansion of period ω0 [32], namely,

u1(x, t) =
∞∑

k=−∞

zk(x)e
ikω0t, u2(x, t) =

∞∑
k=−∞

yk(x)e
ikω0t, (23)

with {zk}, {yk} ∈ R. Then, the dynamical equations are reduced to a set of coupled equations:

[µ− kω0 − V (x)]zk +
1

2
∂2xzk =

∑
p

∑
q

(zpz
∗
q + ypy

∗
q )zk−p+q (24)

[µ− kω0 − V (x)]yk +
1

2
∂2xyk =

∑
p

∑
q

(zpz
∗
q + ypy

∗
q )yk−p+q (25)

where we have used the notation zk ≡ zk(x), yk ≡ yk(x). If the trap is absent, it is straightforward to see that

z0(x) =

√
µ

2
tanh(

√
2ω0x) = y0(x), (26)

z1(x) = −
√
µ

2
− ω0sech(

√
2ω0x) = −y1(x), (27)

zj(x) = yj(x) = 0, |j| > 1 or j = −1, (28)

is actually the solution (13)-(14) for χ = π/4, ϕ = k = 0, and ω0 = D2/2. In order to numerically find a DD soliton solution
in the system with the trap, the previous solution (with the dark component {zk} multiplied by the Thomas-Fermi cloud with
uTF
1 =

√
max(µ− V (x), 0)) is introduced as a seed for a fixed-point method in the system of Eqs. (24)-(25). Throughout

this section, we have considered —for convenience— a trap strength Ω = 0.2 in order to consume less time in the numerical
calculations, as will be explained below. Figures 2 and 3 show the periodic orbit for t = 0 without and with a trap potential,
respectively. It is worth remarking that solutions in the trap exist for µ > 2ω0, as predicted in the end of section II.

Once a periodic solution is found, its (linear) orbital stability can be analyzed by means of Floquet analysis. To this end,
the time evolution of a small perturbation ξ1(x, t), ξ2(x, t) to a periodic solution {u1,0(x, t), u2,0(x, t)} must be traced. For the
double indices of ui,j , i represents the component index, i.e., i = 1, 2 is the first and second component of the dark-dark soliton
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FIG. 3: Same as Fig. 2 but in the trapped case with Ω = 0.2.

solution respectively. The index j = 0 denotes that this is the (numerically) exact periodic solutions for u1 and u2, around which
we linearize in our Floquet analysis. The perturbations are introduced in the dynamical equations (2)-(3) as:

u1(x, t) = [u1,0(x, t) + δξ1(x, t)] , u2(x, t) = [u2,0(x, t) + δξ2(x, t)] , (29)

and the resulting equation at order O(δ) reads:

i∂tξ1 = [−1

2
∂2x + 2|u1,0|2 + |u2,0|2 − µ+ V (x)]ξ1 + u21,0ξ

∗
1 + u∗2,0u1,0ξ2 + u2,0u1,0ξ

∗
2 , (30)

i∂tξ2 = [−1

2
∂2x + |u1,0|2 + 2|u2,0|2 − µ+ V (x)]ξ2 + u22,0ξ

∗
2 + u∗1,0u2,0ξ1 + u1,0u2,0ξ

∗
1 . (31)

Then, in the framework of Floquet analysis, the stability properties of periodic orbits are resolved by diagonalizing the mon-
odromy matrix M, which is defined as:  Re(ξ1(x, T ))

Im(ξ1(x, T ))
Re(ξ2(x, T ))
Im(ξ2(x, T ))

 = M

 Re(ξ1(x, 0))
Im(ξ1(x, 0))
Re(ξ2(x, 0))
Im(ξ2(x, 0))

 . (32)

with T = 2π/ω0. As the system is symplectic and Hamiltonian, the linear stability of the solutions requires that the monodromy
eigenvalues, λ (also called Floquet multipliers) must lie on the unit circle (see, e.g., [35, 36] for details). The Floquet multipliers
can also be written as λ = exp(iΘ), with Θ being denoted as the Floquet exponent. An internal mode of the soliton corresponds
to a spatially localized solution of Eqs. (30)- (31), with its oscillation frequency related to the Floquet exponents as ωm =
Θω0/(2π). Figures 2 and 3 show a typical Floquet multiplier spectra, indicating stability of the periodic orbits. All the analyzed
solutions (i.e. with Ω = 0 and Ω = 0.2) are stable.

The choice of a trap strength Ω = 0.2 for studying the stability of periodic orbits instead of the value Ω = 0.01 as in the
rest of the paper is twofold. On the one hand, as indicated by Eq. (22), the oscillation period scales with Ω−1; consequently,
decreasing 20 times the trap strength implies an integration time 20 times larger; on the other hand, the Thomas-Fermi radius
(RTF =

√
2µ/Ω), which measures the dark soliton size, would also increase 20 times, so the number of equations to integrate

also increases at this rate. With Ω = 0.2, obtaining the monodromy matrix takes around 30 minutes. Consequently, the
computation of the monodromy matrix for Ω = 0.01 would take about 200 hours.

Some interesting results can be extracted by the analysis of the internal modes of the periodic orbits. Figure 4(left) shows
the dependence of three internal modes of the Floquet spectrum with respect to µ for ω0 = 0.5. The blue line is close to the
frequency predicted by Eq. (22) [depicted as a dashed red line]. Indeed, perturbing the beating DD soliton with the corresponding
eigenmode, we have confirmed that this perturbation leads to an oscillation of the soliton in the trap with a frequency equal to
that of the eigenmode (cf. left panel of Fig. 5). It can be observed that the agreement between the numerical eigenfrequency and
that predicted by Eq. (22) improves when µ increases, as expected. This is because the assumption that the solitary wave is a
particle inside a Thomas-Fermi cloud is one of increasing validity the deeper one is within the Thomas-Fermi limit of large µ.
The right panel of Figure 4 shows the dependence of the frequency of the internal mode corresponding to the oscillation of the
trap with respect to ω0 for fixed µ = 5 and compares it with the frequency predicted by Eq. (22).

We note here, as an aside in the case Ω = 0, that the internal soliton modes are neutral modes located at (1,0) on the unit
circle. In particular, the mode associated with the oscillation of the DD soliton in the trap becomes in this case a neutral mode
associated with the translation of the soliton. The algebraic multiplicity of the multiplier at (1, 0) in the case of Ω = 0 is 8, while
in the trapped case (due to the lifting of translational invariance) it is 6.
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frequency (22) in a trap with Ω = 0.2.
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when perturbed by three different eigenmodes: the left panel corresponds to a soliton perturbed along the blue mode and leads the soliton to
harmonically oscillate near the center of the trap; in the central panel, the perturbation (along the black mode) leads to a breathing of the soliton
width, whereas in the right panel (perturbation along the green mode), the outcome corresponds to an oscillation of the whole condensate. In
both cases, µ = 3, ω0 = 0.5 and Ω = 0.2.

In order to observe the properties of other internal modes, we have perturbed the beating DD soliton with the corresponding
eigenmodes. In particular, a perturbation along the direction of the localized mode depicted in black in the left panel of Fig.
4, leads to a breathing in the width of the soliton — see central panel of Fig. 5. On the other hand, a perturbation along the
direction of the mode depicted in green in the left panel of Fig. 4, leads to an oscillation of the condensate along the trap,
leaving the beating DD soliton unaffected (i.e., the soliton stays at the trap center) — see right panel of Fig. 5. For progressively
weaker traps, the modes of the background condensate and of the dark-bright solitary wave essentially decouple and in fact two
of the frequencies shown in Fig. 4 (green and blue) tend to 0, as the corresponding motions (of the solitary wave through the
background or of the background through the solitary wave) become neutral.

Finally, we make a remark about the way we have calculated the valueNB that must be introduced in Eq. (22). The procedure
consists in performing an SO(2) rotation with χ = −π/4 to the periodic DD soliton at t = 0. This solution is shown in the left
panel of Fig. 6, whereas the rotated solution is depicted in the right panel of the same figure. Thus, NB is the norm of the bright
component of the rotated solution. It can also be inferred from the Fourier coefficients of the periodic orbit:

NB =

∫
R
|u2|2dx =

1

2

∫
R
[|
∑
k

zk|2 + |
∑
k

yk|2 − 2Re((
∑
k

z∗k)(
∑
k

yk))]dx. (33)
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FIG. 7: The comparison between the integrable case g11 : g12 : g22 = 1 : 1 : 1 (left column) and the non-integrable case g11 : g12 : g22 =
1.03 : 1 : 0.97 (right column), is demonstrated. The upper panels show the densities of the first dark soliton component while the lower ones
show the second dark component. Here η = 0.6, χ = π/4, θ = 0, k = 0, µ = 1. Based on the similarity of the relevant dynamics, we will
focus on the case of unit nonlinear coefficients.

IV. SINGLE BEATING DARK-DARK SOLITONS NEAR AND FAR FROM THE MANAKOV LIMIT

We now turn to a numerical study of the properties of the beating DD soliton states. Firstly, in the absence of a trap, we
are going to compare the integrable case with equal scattering lengths g11 : g12 : g22 = 1 : 1 : 1 to the non-integrable case
g11 : g12 : g22 = 1.03 : 1 : 0.97 (see Ref. [30]). From Fig. 7, we observe that both of the dark components are oscillating with
fixed frequencies and these two cases are very similar [38] All of the runs reported below for one of these parameter sets have
been repeated with the second one and in all cases we have observed a close similarity between the dynamical phenomenology
of these two cases.

To highlight the fact that substantial variations of the scattering length–which can be imposed by virtue of a Feshbach
resonance–may have a significant impact on the robustness of the beating DD solitons, we consider scattering lengths in the
set with ratios g11 : g12 : g22 = g : 1 : 1. In particular, we take g = 1.1, 1.2, 1.6 in Fig. 8. When g is not so large, i.e.,
g = 1.1, 1.2, the beating DD soliton oscillates and, as t increases, the change in the scattering length results in mobility of the
coherent structure. However, more dramatic events can arise when g is relatively large, e.g., for g = 1.6. There, we can see that
the soliton is finally split into two fragments (upon growth of the intrinsic beating oscillation which eventually induces the split-
ting) and results in two states that resemble dark-antidark solitons [31] (see also Ref. [29]). In particular, each of the components
acquires a dark soliton coupled to an anti-dark soliton, i.e., a density hump (instead of a dip) on top of a finite background, in
the second component.

In Fig. 9, we show a particular example of the DD soliton in the trap, which oscillates around its center; the parameter values
are µ = 1, η = 0.6, initial soliton position x0(t = 0) = 2.5, and trap strength Ω = 0.05. Note that for these runs, the initial
profile of the beating DD soliton in the trap is approximated by the numerically found (in trap) ground state — i.e., the Thomas-
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the oscillation of the soliton initially centered at x0 = 2.5 (the chemical potential is µ = 1). The lower left panel demonstrates the center
of mass of the DD in the upper panels. The analytical oscillation frequency, given by Eq. (22), is 0.03123, while the numerical frequency,
calculated by Fourier transform, is 0.03238. The lower right panel yields the comparison between the analytically calculated frequencies (red
line) versus the numerical obtained ones (the blue triangles), as r varies between 0.1 and 14.

Fermi cloud — multiplied by the beating DD solution (without a trap) of Eqs. (13)-(14). Then via a time-stepping algorithm
(a fourth-order Runge-Kutta scheme), we obtain the time evolution of the densities of the oscillating solitons in the upper two
panels. Moreover, the left lower panel shows the center of mass of the beating DD soliton in the trap. Using Fourier analysis,
we can infer the numerical frequency of in-trap oscillation, which can, in turn, be compared to the analytical one, cf. Eq. (22).
As shown in the bottom right panel of the figure, there is very good agreement between the two.

Next, we consider the in-trap dynamics of a single beating DD soliton but for the non-integrable cases. Again, when g11 :
g12 : g22 = 1.03 : 1 : 0.97, we observe a nearly identical phenomenology to that of unit gij’s. For the more significant deviations
from that case of the form g11 : g12 : g22 = g : 1 : 1 where g = 1.1, 1.2, 1.6, the results are reported in Fig. 10. For lower values
of g = 1.1, 1.2, the behavior of the DD is similar to the case with g = 1, however, we progressively observe more significant
radiative emissions which also affect the oscillation frequency. However, once again the modifications of the phenomenology
are most dramatic in the case of g = 1.6 of the bottom panels. There, the radiation emission is accompanied by growing intrinsic
oscillations which eventually result in the breakup and formation of a single dark-antidark solitary wave.
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FIG. 10: The comparison of the oscillation of the density of a DD soliton within a trap of trap frequency Ω = 0.05 for different values of g;
left and right panels depict the first and second component, respectively. The soliton is initialized at x0 = 2.5; g is set to be 1.1 (top panels),
1.2 (middle panels), 1.6 (bottom panels) for the combination of the scattering length g11 : g12 : g22 = g : 1 : 1. Other parameters are similar
to Fig. 9.

V. TWO DARK-DARK SOLITON STATES: DYNAMICS AND INTERACTIONS

We now consider the interactions of two beating DD solitons. We once again start from the untrapped case and use as an
initial ansatz a two-DB soliton state of the form:

u1 = (cosϕ tanh ξ− + i sinϕ) (cosϕ tanh ξ+ − i sinϕ) (34)

u2 = ηsechξ−e
i(kx+θ(t)) + ei∆θηsechξ+e

i(−kx+θ(t)) (35)

where ξ± = D(x ± x0), 2x0 is the relative distance between the two solitons, and ∆θ is the relative phase between the two
bright solitons. Below we consider both the out-of-phase (OOP) case, ∆θ = π, as well as the in-phase (IP) case ∆θ = 0. Once
again taking advantage of the model invariance under the SO(2) rotations, as we did for the single DD soliton case, we use the
orthogonal matrix (12) and obtain a two-beating-DD-soliton ansatz in the form:

u1 = cos(χ) (cosϕ tanh ξ− + i sinϕ) (cosϕ tanh ξ+ − i sinϕ)

− sin(χ)
(
ηsechξ−e

i(kx+θ(t)) + ei∆θηsechξ+e
i(−kx+θ(t))

)
, (36)

u2 = sin(χ) (cosϕ tanh ξ− + i sinϕ) (cosϕ tanh ξ+ − i sinϕ)

+ cos(χ)
(
ηsechξ−e

i(kx+θ(t)) + ei∆θηsechξ+e
i(−kx+θ(t))

)
. (37)

In our numerical study for the dynamics of the two-beating-DD-soliton state, we first consider the integrable case, correspond-
ing to g11 = g12 = g22 = 1, both for the in-phase and out-of-phase cases. The results of the simulations, using initial conditions
corresponding to the above ansatz, are shown in Fig. 11. In the in-phase case, the repulsion between the beating DD solitons is
immediately evident resulting in the strong separation of the two waves (which still perform their internal beating). On the other
hand, in the out-of-phase case, the competition between the repulsion of the dark components and the attraction between the
bright components of the progenitor DB solitons (see Ref. [33]) can be discerned, as the configuration remains nearly stationary
for a lengthy evolution interval. Finally, however, the repulsive interaction prevails and the solitons eventually separate.

Next, we consider the non-integrable case. Since for g11 : g12 : g22 = 1.03 : 1 : 0.97, the phenomenology is again very
similar to g11 = g12 = g22, we consider the significant departure from this limit pertaining to g11 : g12 : g22 = 1.6 : 1 : 1.
In Fig. 12, we observe that in the in-phase case, the two beating DD solitons initially separate and move away from each other,
then they are reflected from the domain boundary and a new collision occurs. After this collision, a highly nontrivial event is
observed, namely one of the two beating DD solitons is decomposed into a dark-antidark soliton pair, with each of these solitons
moving with different velocities. It should be pointed out here that the reflection from the domain boundary is a by-product of
the no-flux boundary conditions used in the simulations. Nevertheless, we chose to illustrate the evolution for such longer times
(instead of truncating it prior to such boundary-induced reflection and subsequent collision) in order to encompass the interesting
phenomenology of the collision of the reflected waves and in that light contrast the integrable interaction of Fig. 11 with the
highly non-integrable one of Fig. 12. For the out-of-phase case, the separation arises much faster than for the unit coefficients
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FIG. 12: Space-time contour plots of two DD soliton densities in phase (left) and out of phase (right) for g = 1.6 in the set g11 : g12 : g22 =
1.6 : 1 : 1. Here χ = π/4, η = 0.5, x0 = 1.5, D = 1.2.

and, interestingly, results in an asymmetric evolution with one of the DD solitons breaking up in a pair of dark-antidark solitons
(as in Fig. 8 of section II). Notice that, as in the in-phase case, the other soliton is not broken up in a similar way during the
horizon of the simulation although it is likely that such an event will also occur for that wave.

Next, we consider the two-beating-DD soliton in the trap, in the case of unit coefficients. We set V (x) = 1
2Ω

2x2, with
Ω = 0.05, and the chemical potential µ = 1. From Fig. 13, we infer that the two beating DD solitons are now trapped and
oscillate around an equilibrium position. Notice that in the in-phase case, the solitons perform out-of-phase oscillations and
undergo quasi-elastic collisions. while In the out-of-phase case, the weak residual repulsion is counter balanced by the presence
of the trap, and we observe that the two beating DD solitons remain in a close distance to each other.

Finally, we consider two DD with g11 : g12 : g22 = 1.6 : 1 : 1 within the same trap in Fig. 14. In this case, we observe that
despite the presence of the trap, it is not possible to sustain a robust set of oscillations and interactions between the beating DD
solitons. This is especially true in the out-of-phase case, where the oscillatory growth of the beating eventually results in the
breakup of the DD soliton states into dark-antidark ones (which generally appear more robust for such higher values of g).

VI. CONCLUSIONS AND FUTURE CHALLENGES

In this work, we have studied the stability and dynamics of beating dark-dark (DD) solitons in pseudo-spinor Bose-Einstein
condensates, motivated by recent experiments where such structures were observed. We have illustrated the connection of these
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FIG. 14: Space-time contour plots of two beating DD soliton densities in phase (left) and out of phase (right) for the case with g11 : g12 :
g22 = 1.6 : 1 : 1 within a harmonic trap with trap frequency Ω = 0.05. The parameters used are the same as for the previous figure.

solitons with internal density oscillations to dark-bright (DB) solitons identified earlier, through SO(2) (and more generally
SU(2)) rotations. We have illustrated that such states persist in the presence of the trap and, in fact, oscillate with the frequency
previously predicted for dark-bright solitons. Using Floquet analysis, we have also identified beating dark-dark solitons as stable
periodic orbits in the integrable (Manakov) limit with and without a trap.

We have also investigated in detail the effect of the deviation from the Manakov case by considering different from unity
scattering length ratios. We have shown that when the deviation from the integrable case is small (as is the physically relevant
case of a pseudo-spinor condensate composed by different spin states of rubidium), then the stability and dynamics of beating
dark-dark solitons follow that of the integrable case. However, we also illustrated that a significant departure of the ratios
of the scattering lengths from this limit (towards the miscible regime) will eventually break up beating dark-dark solitons in
favor of dark-antidark soliton entities. We have also considered the interaction of beating dark-dark solitons finding a typically
repulsive dynamical behavior, which can be attenuated only in the case where the bright components (of the progenitor dark-
bright solitons, used to create the dark-dark ones) are out-of-phase (and, hence, attracting each other). In that case, especially in
the presence of a trap, a robust set of multi-beating-dark-dark-soliton states can be created.

The discussion of DD solitons in this work has focused upon those states that can be constructed, in the spatially extended,
Manakov case, from the SU(2) rotation of a DB soliton and confined states in the presence of a trapping potential. In both cases,
each component of the DD soliton exhibits the same background flow velocity. In a series of experiments [18, 19, 25, 33], a
relative flow between two condensate components induced by a magnetic field gradient led to DB solitons and counterflow-
induced modulational instability resulting in the formation of a number of beating DD solitons. It is natural, then, to inquire
into the effect that relative motion between two condensate components has on localized structures. In the integrable case, the
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most general DD soliton was constructed using a Bäcklund transformation [28]. Because it allows for a counterflow, this soliton
is characterized by eight free parameters in contrast to the seven parameter SU(2) rotated DB soliton studied here or the seven
parameter static DD soliton [37]. However, and since the present study focused predominantly on the five-parameter family
stemming from the SO(2) rotation, the persistence, stability, and interactions of the full seven parameter solitonic states (and
even the eight parameter generalization thereof presented within [28]) in the non-integrable case constitute themes worthy of
further study.

There are many other directions that are worth considering further along the lines of this work. Quantifying further (and
semi-analytically, if possible) the interactions between the beating dark-dark solitons, as well as studying in more detail the
dark-antidark solitons that appear to spontaneously arise from their breakup in the miscible regime are interesting extensions of
this work in the one-dimensional setting. On the other hand, one naturally may consider the two-dimensional (2D) generalization
of the considerations herein, especially upon bearing in mind that the SU(2) (or SO(2)) rotations used herein are not restricted to
the one-dimensional realm in any particular way. In that regard, one may envision vortex-bright soliton states [34] (i.e., the 2D
analog of the dark-bright waves) rotated via SO(2) to produce vortex-vortex type states (in analogy to the dark-dark ones). Such
states are currently under study and will be reported in future publications.
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[23] C. Yin, N. G. Berloff, V. M. Pérez-Garcı́a, D. Novoa, A. V. Carpentier, and H. Michinel, Phys. Rev. A 83, 051605(R) (2011).
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arXiv:1104.4359.

[34] K. J. H. Law, P. G. Kevrekidis, and L. S. Tuckerman, Phys. Rev. Lett. 105, 160405 (2010).
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