7 research outputs found

    A prospective case series evaluating use of an in-line air detection and purging system to reduce air burden during major surgery

    No full text
    Abstract Background Intravascular air embolism (AE) is a preventable but potentially catastrophic complication caused by intravenous tubing, trauma, and diagnostic and surgical procedures. The potentially fatal risks of arterial AE are well-known, and emerging evidence demonstrates impact of venous AEs on inflammatory response and coagulation factors. A novel FDA-approved in-line air detection and purging system was used to detect and remove air caused by administering a rapid fluid bolus during surgery. Methods A prospective, randomized, case series was conducted. Subjects were observed using standard monitors, including transesophageal echocardiography (TEE) in the operating room. After general anesthesia was induced, an introducer and pulmonary artery catheter was inserted in the right internal jugular to administer fluids and monitor cardiac pressures. Six patients undergoing cardiac surgery were studied. Each patient received four randomized fluid boluses: two with the in-line air purging device, two without. For each bolus, a bulb infuser was squeezed three times (10–15 mL) over 5 s. The TEE was positioned in the mid-esophageal right atrium (RA) to quantify peak air clearance, and images were video recorded throughout each bolus. Air was quantified using optical densitometry (OD) from images demonstrating maximal air in the RA. Results All subjects demonstrated significantly lower air burden when the air reduction device was used (p = 0.004), and the average time to clear 90% of air was also lower, 3.7 ± 1.2 s vs. 5.3 ± 1.3 s (p < 0.001). Conclusion An air purging system reduced air burden from bolus administration and could consequently reduce the risk of harmful or fatal AEs during surgery

    A central role of plasmin in cardiac injury initiated by fetal exposure to maternal anti-Ro autoantibodies

    No full text
    Objective. Cardiac neonatal lupus (cardiac-NL), initiated by surface binding of anti-Ro60 autoantibodies to apoptotic cardiocytes during development, activates the urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) system. Subsequent accumulation of apoptotic cells and plasmin generation facilitates increased binding of anti-Ro60 by disrupting and cleaving circulating β2-glycoprotein I (β2GPI) thereby eliminating its protective effect. The association of soluble levels of components of the uPA/uPAR system with cardiac-NL was examined. Methods. Levels of the uPA/uPAR system were assessed by ELISA in cord blood and immunohistological evaluation of autopsies. Results. uPA, uPAR and plasminogen levels were each significantly higher in cord blood from cardiac-NL (n = 35) compared with non-cardiac-NL (n = 26) anti-Ro-exposed neonates: 3.3 ± 0.1 vs 1.9 ± 0.05 ng/ml (P < 0.0001), 6.6 ± 0.3 vs 2.1 ± 0.2 ng/ml (P < 0.0001) and 435 ± 34 vs 220 ± 19 ng/ml (P < 0.0001), respectively. In three twin pairs discordant for cardiac-NL, the twin with cardiac-NL had higher levels of uPA, uPAR and plasminogen than the unaffected twin (3.1 ± 0.1 vs 1.9 ± 0.05 ng/ml; P = 0.0086, 6.2 ± 1.4 vs 2.2 ± 0.7 ng/ml; P = 0.147 and 412 ± 61 vs 260 ± 27 ng/ml; P = 0.152, respectively). Immunohistological evaluation of three hearts from fetuses dying with cardiac-NL revealed macrophages and giant cells expressing uPA and plasminogen in the septal region. Conclusion. Increased soluble uPA, uPAR and plasminogen in cord blood and expression in affected tissue of fetuses with cardiac-NL supports the hypothesis that fetal cardiac injury is in part mediated by plasmin generation initiated by anti-Ro binding to the apoptotic cardiocyte.We thank the support of the Australian National Health and Medical Research Council Postgraduate Training Fellowship Grant 595989 and AHA Award #12POST9830005 (to J.H.R.) and the Clinician Scientist Award from the Doris Duke Charitable Foundation, Grant #2009040 (to M.K.H.). This work was supported by National Institutes of Health grants 1K01AR060302 (to P.B), RO1 AR42455- 16 and N01-AR-4-2271 (to J.P.B. and R.M.C.)

    Real-time artificial intelligence-based guidance of echocardiographic imaging by novices: Image quality and suitability for diagnostic interpretation and quantitative analysis

    No full text
    Background:We aimed to assess in a prospective multicenter study the quality of echocardiographic exams performed by inexperienced users guided by a new artificial intelligence software and evaluate their suitability for diagnostic interpretation of basic cardiac pathology and quantitative analysis of cardiac chamber and function. Methods:The software (UltraSight, Ltd) was embedded into a handheld imaging device (Lumify; Philips). Six nurses and 3 medical residents, who underwent minimal training, scanned 240 patients (61±16 years; 63% with cardiac pathology) in 10 standard views. All patients were also scanned by expert sonographers using the same device without artificial intelligence guidance. Studies were reviewed by 5 certified echocardiographers blinded to the imager\u27s identity, who evaluated the ability to assess left and right ventricular size and function, pericardial effusion, valve morphology, and left atrial and inferior vena cava sizes. Finally, apical 4-chamber images of adequate quality, acquired by novices and sonographers in 100 patients, were analyzed to measure left ventricular volumes, ejection fraction, and global longitudinal strain by an expert reader using conventional methodology. Measurements were compared between novices\u27 and experts\u27 images. Results:Of the 240 studies acquired by novices, 99.2%, 99.6%, 92.9%, and 100% had sufficient quality to assess left ventricular size and function, right ventricular size, and pericardial effusion, respectively. Valve morphology, right ventricular function, and left atrial and inferior vena cava size were visualized in 67% to 98% exams. Images obtained by novices and sonographers yielded concordant diagnostic interpretation in 83% to 96% studies. Quantitative analysis was feasible in 83% images acquired by novices and resulted in high correlations (r≥0.74) and small biases, compared with those obtained by sonographers. Conclusions:After minimal training with the real-time guidance software, novice users can acquire images of diagnostic quality approaching that of expert sonographers in most patients. This technology may increase adoption and improve accuracy of point-of-care cardiac ultrasound
    corecore