23 research outputs found

    Making Structural Sense of Dimerization Interfaces of Delta Opioid Receptor Homodimers†

    Get PDF
    ABSTRACT: Opioid receptors, like other members of theG protein-coupled receptor (GPCR) family, have been shown to associate to form dimers and/or oligomers at the plasma membrane. Whether this association is stable or transient is not known. Recent compelling evidence suggests that at least some GPCRs rapidly associate and dissociate. We have recently calculated binding affinities from free energy estimates to predict transient association between mouse delta opioid receptor (DOR) protomers at a symmetric interface involving the fourth transmembrane (TM4) helix (herein termed “4 ” dimer). Here we present disulfide cross-linking experiments with DOR constructs with cysteines substituted at the extracellular ends of TM4 or TM5 that confirm the formation of DOR complexes involving these helices. Our results are consistent with the involvement of TM4 and/or TM5 at the DOR homodimer interface, but possibly with differing association propensities. Coarse-grained (CG) well-tempered metadynamics simulations of two different dimeric arrangements of DOR involving TM4 alone or with TM5 (herein termed “4/5 ” dimer) in an explicit lipid-water environment confirmed the presence of two structurally and energetically similar configurations of the 4 dimer, as previously assessed by umbrella sampling calculations, and revealed a single energetic minimum of the 4/5 dimer. Additional CG umbrella sampling simulations of the 4/5 dimer indicated that the strength of association between DOR protomers varies depending on the protein region at the interface, wit

    Making Structural Sense of Dimerization Interfaces of Delta Opioid Receptor Homodimers

    No full text
    Opioid receptors, like other members of the G protein-coupled receptor (GPCR) family, have been shown to associate to form dimers and/or oligomers at the plasma membrane. Whether this association is stable or transient is not known. Recent compelling evidence suggests that at least some GPCRs rapidly associate and dissociate. We have recently calculated binding affinities from free energy estimates to predict transient association between mouse delta opioid receptor (DOR) protomers at a symmetric interface involving the fourth transmembrane (TM4) helix (herein termed “4” dimer). Here we present disulfide cross-linking experiments with DOR constructs with cysteines substituted at the extracellular ends of TM4 or TM5 that confirm the formation of DOR complexes involving these helices. Our results are consistent with the involvement of TM4 and/or TM5 at the DOR homodimer interface, but possibly with differing association propensities. Coarse-grained (CG) well-tempered metadynamics simulations of two different dimeric arrangements of DOR involving TM4 alone or with TM5 (herein termed “4/5” dimer) in an explicit lipid−water environment confirmed the presence of two structurally and energetically similar configurations of the 4 dimer, as previously assessed by umbrella sampling calculations, and revealed a single energetic minimum of the 4/5 dimer. Additional CG umbrella sampling simulations of the 4/5 dimer indicated that the strength of association between DOR protomers varies depending on the protein region at the interface, with the 4 dimer being more stable than the 4/5 dimer

    A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors

    No full text
    © 2018 The Author(s). We introduce and validate a new precision oncology framework for the systematic prioritization of drugs targeting mechanistic tumor dependencies in individual patients. Compounds are prioritized on the basis of their ability to invert the concerted activity of master regulator proteins that mechanistically regulate tumor cell state, as assessed from systematic drug perturbation assays. We validated the approach on a cohort of 212 gastroenteropancreatic neuroendocrine tumors (GEP-NETs), a rare malignancy originating in the pancreas and gastrointestinal tract. The analysis identified several master regulator proteins, including key regulators of neuroendocrine lineage progenitor state and immunoevasion, whose role as critical tumor dependencies was experimentally confirmed. Transcriptome analysis of GEP-NET-derived cells, perturbed with a library of 107 compounds, identified the HDAC class I inhibitor entinostat as a potent inhibitor of master regulator activity for 42% of metastatic GEP-NET patients, abrogating tumor growth in vivo. This approach may thus complement current efforts in precision oncology

    Conformational and orientational guidance of the analgesic dipeptide kyotorphin induced by lipidic membranes: putative correlation toward receptor docking.

    No full text
    The analgesic dipeptide kyotorphin (L-Tyr-L-Arg) and an acylated kyotorphin derivative were studied by a combination of theoretical (molecular dynamics simulation and quantum mechanics methods) and experimental (fluorescence and infrared spectroscopies) approaches both in solution and in model systems of membranes. At biological pH the peptides have a neutral net charge. Nevertheless, their phenolic rings interact with phospholipid molecules (partition coefficient varies from 6 x 10(2) to 2 x 10(4), depending on the lipid and pH used) despite being exposed to the aqueous bulk medium. The lowest energy transition dipole moment is displaced from the normal to the lipid bilayer by 20 degrees on average. The observed extensive interaction, pK(a), precise location, and well-defined orientation in membranes combined with the ability to discriminate rigid raftlike membrane domains suggest that kyotorphin meets the structural constraints needed for receptor-ligand interaction. The acylated kyotorphin derivative mimics kyotorphin properties and represents a promising way for entrapment in a drug carrier and transport across the blood-brain barrier.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors.

    No full text
    We introduce and validate a new precision oncology framework for the systematic prioritization of drugs targeting mechanistic tumor dependencies in individual patients. Compounds are prioritized on the basis of their ability to invert the concerted activity of master regulator proteins that mechanistically regulate tumor cell state, as assessed from systematic drug perturbation assays. We validated the approach on a cohort of 212 gastroenteropancreatic neuroendocrine tumors (GEP-NETs), a rare malignancy originating in the pancreas and gastrointestinal tract. The analysis identified several master regulator proteins, including key regulators of neuroendocrine lineage progenitor state and immunoevasion, whose role as critical tumor dependencies was experimentally confirmed. Transcriptome analysis of GEP-NET-derived cells, perturbed with a library of 107 compounds, identified the HDAC class I inhibitor entinostat as a potent inhibitor of master regulator activity for 42% of metastatic GEP-NET patients, abrogating tumor growth in vivo. This approach may thus complement current efforts in precision oncology

    A Pairwise preferential interaction model for understanding peptide aggregation

    Get PDF
    A pairwise preferential interaction model (PPIM), based on Kirkwood-Buff integrals, is developed to quantify and characterize the interactions between some of the functional groups commonly observed in peptides. The existing experimental data are analyzed to determine the preferential interaction parameters for different amino acid and small peptide systems in aqueous solutions. The preferential interactions between the different functional groups present in the peptides are then isolated and quantified by assuming simple pairwise additivity. The PPIM approach provides consistent estimates for the pair interactions between the same functional groups obtained from different solute molecules. Furthermore, these interactions appear to be chemically intuitive. It is argued that this type of approach can provide valuable information concerning specific functional group correlations which could give rise to peptide aggregation

    Recent applications of Kirkwood–Buff theory to biological systems

    Get PDF
    The effect of cosolvents on biomolecular equilibria has traditionally been rationalized using simple binding models. More recently, a renewed interest in the use of Kirkwood–Buff (KB) theory to analyze solution mixtures has provided new information on the effects of osmolytes and denaturants and their interactions with biomolecules. Here we review the status of KB theory as applied to biological systems. In particular, the existing models of denaturation are analyzed in terms of KB theory, and the use of KB theory to interpret computer simulation data for these systems is discussed

    Transforming Big Data into cancer-relevant insight: An initial, multi-tier approach to assess reproducibility and relevance

    No full text
    The Cancer Target Discovery and Development (CTD2) Network was established to accelerate the transformation of "Big Data" into novel pharmacological targets, lead compounds, and biomarkers for rapid translation into improved patient outcomes. It rapidly became clear in this collaborative network that a key central issue was to define what constitutes sufficient computational or experimental evidence to support a biologically or clinically relevant finding. This manuscript represents a first attempt to delineate the challenges of supporting and confirming discoveries arising from the systematic analysis of large-scale data resources in a collaborative work environment and to provide a framework that would begin a community discussion to resolve these challenges. The Network implemented a multi-Tier framework designed to substantiate the biological and biomedical relevance as well as the reproducibility of data and insights resulting from its collaborative activities. The same approach can be used by the broad scientific community to drive development of novel therapeutic and biomarker strategies for cancer

    The pH-Dependent Conformational States of Kyotorphin: A Constant-pH Molecular Dynamics Study

    No full text
    An extensive conformational study of the analgesic dipeptide kyotorphin (L-Tyr-L-Arg) at different pH values was performed using a constant-pH molecular dynamics method. This dipeptide showed a remarkable pH-dependent conformational variety. The protonation of the N-terminal amine was identified as a key element in the transition between the more extended and the more packed conformational states, as monitored by the dihedral angle defined by the atoms 1CÎČ-1Cα-2Cα-2CÎČ. The principal-component analysis of kyotorphin identified two major conformational populations (the extended trans and the packed cis) together with conformations that occur exclusively at extreme pH values. Other, less stable conformations were also identified, which help us to understand the transitions between the predominant populations. The fitting of kyotorphin's conformational space to the structure of morphine resulted in a set of conformers that were able to fulfill most of the constraints for the ÎŒ-receptor. These results suggest that there may be strong similarities between the kyotorphin receptor and the structural family of opioid receptors
    corecore