51 research outputs found

    Nanoparticle-chaperoned urinary 'synthetic biomarkers' for profiling proteases in cancer

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 61-63).Many biomarker-based diagnostics have poor predictive value because of their dependence on naturally occurring endogenous biomolecules to indicate disease. This work presents a diagnostic platform that uses nanoparticles to profile underlying proteolytic signatures of diseases. In this thesis, work is presented on long circulating peptide-nanoparticle probes that can survey, sense, and remotely report on dysregulated protease activities in cancer. In this strategy, iron oxide nanoparticles are utilized as chaperons to deliver protease-specific peptide libraries to tumors whereupon selective cleavage by active proteases releases peptide fragments that are cleared by the renal system into the urine. These peptide fragments are pre-designed with internal photolabile triggers that un-cage isobaric peptide mass tags optimized for multiplexed LC MS/MS quantification. Results demonstrate that such peptide 'synthetic biomarker' panels uncover unique proteolytic signatures that can be correlated with disease states, allowing for the detection of cancer and potential long-term monitoring of disease using an implantable form. This concept of administering prodiagnostic reagents and analyzing remote reporters is amenable to a broad range of protease-dependent complex diseases, such as liver fibrosis and coagulopathies, and infectious disease.by Omar O. Abudayyeh.S.B

    RNA targeting with CRISPR–Cas13

    Get PDF
    RNA has important and diverse roles in biology, but molecular tools to manipulate and measure it are limited. For example, RNA interference1-3 can efficiently knockdown RNAs, but it is prone to off-target effects4, and visualizing RNAs typically relies on the introduction of exogenous tags5. Here we demonstrate that the class 2 type VI6,7 RNA-guided RNA-targeting CRISPR-Cas effector Cas13a8(previously known as C2c2) can be engineered for mammalian cell RNA knockdown and binding. After initial screening of 15 orthologues, we identified Cas13a from Leptotrichia wadei (LwaCas13a) as the most effective in an interference assay in Escherichia coli. LwaCas13a can be heterologously expressed in mammalian and plant cells for targeted knockdown of either reporter or endogenous transcripts with comparable levels of knockdown as RNA interference and improved specificity. Catalytically inactive LwaCas13a maintains targeted RNA binding activity, which we leveraged for programmable tracking of transcripts in live cells. Our results establish CRISPR-Cas13a as a flexible platform for studying RNA in mammalian cells and therapeutic development.National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049

    Structure and Engineering of Francisella novicida Cas9

    Get PDF
    Summary The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets complementary to the guide RNA and has been applied to programmable genome editing. Cas9-mediated cleavage requires a protospacer adjacent motif (PAM) juxtaposed with the DNA target sequence, thus constricting the range of targetable sites. Here, we report the 1.7 Å resolution crystal structures of Cas9 from Francisella novicida (FnCas9), one of the largest Cas9 orthologs, in complex with a guide RNA and its PAM-containing DNA targets. A structural comparison of FnCas9 with other Cas9 orthologs revealed striking conserved and divergent features among distantly related CRISPR-Cas9 systems. We found that FnCas9 recognizes the 5′-NGG-3′ PAM, and used the structural information to create a variant that can recognize the more relaxed 5′-YG-3′ PAM. Furthermore, we demonstrated that the FnCas9-ribonucleoprotein complex can be microinjected into mouse zygotes to edit endogenous sites with the 5′-YG-3′ PAM, thus expanding the target space of the CRISPR-Cas9 toolbox

    Discovery of novel clustered regularly interspaced short palindromic repeat enzymes for transcriptome engineering and human health

    No full text
    Thesis: Ph. D. in Medical Engineering and Medical Physics, Harvard-MIT Program in Health Sciences and Technology, September 2018.Page 399 blank. Cataloged from PDF version of thesis.Includes bibliographical references (pages 210-229).RNA plays important and diverse roles in biology, yet molecular tools to measure and manipulate RNA are limited. Recently, the bacterial adaptive immune system, CRISPR, has revolutionized our ability to manipulate DNA, but no known RNA-targeting versions exist. To discover parallel bacterial RNA-targeting systems that could be used for transcriptome engineering, we developed a computational pipeline to mine for novel Class 2 CRISPR systems across more than 25,000 bacterial genomes. Among the many novel CRISPR systems, we found a programmable RNA-targeting CRISPR system, CRISPR-Cas 13, that could provide immunity to E. coli against the ssRNA MS2 phage and biochemically characterized the enzyme. We adapted CRISPR-Casl3 for modulating the transcriptome in mammalian and plant cells by heterologously expressing Casl 3 and engineering the enzyme to precisely knockdown, bind, and edit RNA. Cas 13 knockdown was as efficient as RNA interference, but much more specific, across many transcripts tested. RNA editing with Cas 13 was also highly efficient, with up to 90% base editing rates, and as low as 20 off-targets with engineered specificity versions. Lastly, we combined Cas13 with isothermal amplification to develop a CRISPR-based diagnostic (CRISPR-Dx), providing rapid DNA or RNA detection with single-molecule sensitivity and singlebase mismatch specificity. We used this Casl3a-based molecular detection platform, termed SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCKing), to specifically detect pathogenic bacteria, genotype human DNA, and identify cell-free tumor DNA mutations. Our results establish CRISPR-Cas13 as a flexible platform for RNA targeting with wide applications in RNA biology, diagnostics, and therapeutics.by Omar O. Abudayyeh.Ph. D. in Medical Engineering and Medical Physic

    Nucleic Acid Detection of Plant Genes Using CRISPR-Cas13

    No full text
    Nucleic acid detection is vital for agricultural applications including trait detection during breeding, pest surveillance, and pathogen identification. Here, we use a modified version of the CRISPR-based nucleic acid detection platform SHERLOCK to quantify levels of a glyphosate resistance gene in a mixture of soybeans and to detect multiple plant genes in a single reaction. SHERLOCK is rapid (∼15 min), quantitative, and portable, and can process crude soybean extracts as input material for minimal nucleic acid sample preparation. This field-ready SHERLOCK platform with color-based lateral flow readout can be applied for detection and quantitation of genes in a range of agricultural applications

    A Survey of Genome Editing Activity for 16 Cas12a Orthologs

    No full text
    © 2019 by The Keio Journal of Medicine. The class 2 CRISPR-Cas endonuclease Cas12a (previously known as Cpf1) offers several advantages over Cas9, including the ability to process its own array and the requirement for just a single RNA guide. These attributes make Cas12a promising for many genome engineering applications. To further expand the suite of Cas12a tools available, we tested 16 Cas12a orthologs for activity in eukaryotic cells. Four of these new enzymes demonstrated targeted activity, one of which, from Moraxella bovoculi AAX11_00205 (Mb3Cas12a), exhibited robust indel formation. We also showed that Mb3Cas12a displays some tolerance for a shortened PAM (TTN versus the canonical Cas12a PAM TTTV). The addition of these enzymes to the genome editing toolbox will further expand the utility of this powerful technology.National Institutes of Health (Grants 1R01-HG009761, 1R01-MH110049 and 1DP1-HL141201

    SHERLOCK: nucleic acid detection with CRISPR nucleases

    No full text
    © 2019, The Author(s), under exclusive licence to Springer Nature Limited. Rapid detection of nucleic acids is integral to applications in clinical diagnostics and biotechnology. We have recently established a CRISPR-based diagnostic platform that combines nucleic acid pre-amplification with CRISPR–Cas enzymology for specific recognition of desired DNA or RNA sequences. This platform, termed specific high-sensitivity enzymatic reporter unlocking (SHERLOCK), allows multiplexed, portable, and ultra-sensitive detection of RNA or DNA from clinically relevant samples. Here, we provide step-by-step instructions for setting up SHERLOCK assays with recombinase-mediated polymerase pre-amplification of DNA or RNA and subsequent Cas13- or Cas12-mediated detection via fluorescence and colorimetric readouts that provide results in <1 h with a setup time of less than 15 min. We also include guidelines for designing efficient CRISPR RNA (crRNA) and isothermal amplification primers, as well as discuss important considerations for multiplex and quantitative SHERLOCK detection assays

    Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA

    No full text
    © 2020, The Author(s), under exclusive licence to Springer Nature Limited. Nucleic acid detection by isothermal amplification and the collateral cleavage of reporter molecules by CRISPR-associated enzymes is a promising alternative to quantitative PCR. Here, we report the clinical validation of the specific high-sensitivity enzymatic reporter unlocking (SHERLOCK) assay using the enzyme Cas13a from Leptotrichia wadei for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)—the virus that causes coronavirus disease 2019 (COVID-19)—in 154 nasopharyngeal and throat swab samples collected at Siriraj Hospital, Thailand. Within a detection limit of 42 RNA copies per reaction, SHERLOCK was 100% specific and 100% sensitive with a fluorescence readout, and 100% specific and 97% sensitive with a lateral-flow readout. For the full range of viral load in the clinical samples, the fluorescence readout was 100% specific and 96% sensitive. For 380 SARS-CoV-2-negative pre-operative samples from patients undergoing surgery, SHERLOCK was in 100% agreement with quantitative PCR with reverse transcription. The assay, which we show is amenable to multiplexed detection in a single lateral-flow strip incorporating an internal control for ribonuclease contamination, should facilitate SARS-CoV-2 detection in settings with limited resources

    CRISPR-based diagnostics

    No full text
    The accurate and timely diagnosis of disease is a prerequisite for efficient therapeutic intervention and epidemiological surveillance. Diagnostics based on the detection of nucleic acids are among the most sensitive and specific, yet most such assays require costly equipment and trained personnel. Recent developments in diagnostic technologies, in particular those leveraging clustered regularly interspaced short palindromic repeats (CRISPR), aim to enable accurate testing at home, at the point of care and in the field. In this Review, we provide a rundown of the rapidly expanding toolbox for CRISPR-based diagnostics, in particular the various assays, preamplification strategies and readouts, and highlight their main applications in the sensing of a wide range of molecular targets relevant to human health
    • …
    corecore