159 research outputs found

    Forgetful. Short attention span. Unable to concentrate.

    Get PDF
    Two images from Darwell's series 'A Black Dog Came Calling' featured in this magazine article (text by Refqa Abu-Remaileh)

    Identification of a transporter complex responsible for the cytosolic entry of nitrogen-containing bisphosphonates

    Get PDF
    Nitrogen-containing-bisphosphonates (N-BPs) are widely prescribed to treat osteoporosis and other bone-related diseases. Although previous studies established that N-BPs function by inhibiting the mevalonate pathway in osteoclasts, the mechanism by which N-BPs enter the cytosol from the extracellular space to reach their molecular target is not understood. Here we implemented a CRISPRi-mediated genome-wide screen and identified SLC37A3 (solute carrier family 37 member A3) as a gene required for the action of N-BPs in mammalian cells. We observed that SLC37A3 forms a complex with ATRAID (all-trans retinoic acid-induced differentiation factor), a previously identified genetic target of N-BPs. SLC37A3 and ATRAID localize to lysosomes and are required for releasing N-BP molecules that have trafficked to lysosomes through fluid-phase endocytosis into the cytosol. Our results elucidate the route by which N-BPs are delivered to their molecular target, addressing a key aspect of the mechanism of action of N-BPs that may have significant clinical relevance

    Physiologic Medium Rewires Cellular Metabolism and Reveals Uric Acid as an Endogenous Inhibitor of UMP Synthase

    Get PDF
    A complex interplay of environmental factors impacts the metabolism of human cells, but neither traditional culture media nor mouse plasma mimic the metabolite composition of human plasma. Here, we developed a culture medium with polar metabolite concentrations comparable to those of human plasma (human plasma-like medium [HPLM]). Culture in HPLM, relative to that in traditional media, had widespread effects on cellular metabolism, including on the metabolome, redox state, and glucose utilization. Among the most prominent was an inhibition of de novo pyrimidine synthesis—an effect traced to uric acid, which is 10-fold higher in the blood of humans than of mice and other non-primates. We find that uric acid directly inhibits uridine monophosphate synthase (UMPS) and consequently reduces the sensitivity of cancer cells to the chemotherapeutic agent 5-fluorouracil. Thus, media that better recapitulates the composition of human plasma reveals unforeseen metabolic wiring and regulation, suggesting that HPLM should be of broad utility.National Institutes of Health (U.S.) (Grant R01CA103866)National Institutes of Health (U.S.) (Grant R37AI047389

    A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate

    Get PDF
    Serine is a both a proteinogenic amino acid and the source of one-carbon units essential for de novo purine and deoxythymidine synthesis. In the canonical glucose-derived serine synthesis pathway, Homo sapiens phosphoglycerate dehydrogenase (PHGDH) catalyzes the first, ratelimiting step. Genetic loss of PHGDH is toxic towards PHGDH-overexpressing breast cancer cell lines even in the presence of exogenous serine. Here, we use a quantitative high-throughput screen to identify small molecule PHGDH inhibitors. These compounds reduce the production of glucose-derived serine in cells and suppress the growth of PHGDH-dependent cancer cells in culture and in orthotopic xenograft tumors. Surprisingly, PHGDH inhibition reduced the incorporation into nucleotides of one-carbon units from glucose-derived and exogenous serine. We conclude that glycolytic serine synthesis coordinates the use of one-carbon units from endogenous and exogenous serine in nucleotide synthesis, and suggest that one-carbon unit wasting may contribute to the efficacy of PHGDH inhibitors in vitro and in vivo.Damon Runyon Cancer Research Foundation (Sally Gordon Fellowship DRG-112-12)United States. Dept. of Defense. Breast Cancer Research Program (Postdoctoral Fellowship BC120208)American Society for Radiation Oncology (Resident Seed Grant RA-2011-1)European Molecular Biology Organization (Long-Term Fellowship)National Institutes of Health (U.S.) (R03 DA034602-01A1, R01 CA129105, R01 CA103866, and R37 AI047389)United States. Department of Defense (W81XWH-14-PRCRP-IA)Alexander and Margaret Stewart Trus

    WWOX sensitises ovarian cancer cells to paclitaxel via modulation of the ER stress response

    Get PDF
    There are clear gaps in our understanding of genes and pathways through which cancer cells facilitate survival strategies as they become chemoresistant. Paclitaxel is used in the treatment of many cancers, but development of drug resistance is common. Along with being an antimitotic agent paclitaxel also activates endoplasmic reticulum (ER) stress. Here, we examine the role of WWOX (WW domain containing oxidoreductase), a gene frequently lost in several cancers, in mediating paclitaxel response. We examine the ER stress-mediated apoptotic response to paclitaxel in WWOX-transfected epithelial ovarian cancer (EOC) cells and following siRNA knockdown of WWOX. We show that WWOX-induced apoptosis following exposure of EOC cells to paclitaxel is related to ER stress and independent of the antimitotic action of taxanes. The apoptotic response to ER stress induced by WWOX re-expression could be reversed by WWOX siRNA in EOC cells. We report that paclitaxel treatment activates both the IRE-1 and PERK kinases and that the increase in paclitaxel-mediated cell death through WWOX is dependent on active ER stress pathway. Log-rank analysis of overall survival (OS) and progression-free survival (PFS) in two prominent EOC microarray data sets (Tothill and The Cancer Genome Atlas), encompassing ~800 patients in total, confirmed clinical relevance to our findings. High WWOX mRNA expression predicted longer OS and PFS in patients treated with paclitaxel, but not in patients who were treated with only cisplatin. The association of WWOX and survival was dependent on the expression level of glucose-related protein 78 (GRP78), a key ER stress marker in paclitaxel-treated patients. We conclude that WWOX sensitises EOC to paclitaxel via ER stress-induced apoptosis, and predicts clinical outcome in patients. Thus, ER stress response mechanisms could be targeted to overcome chemoresistance in cancer

    High fat diet enhances stemness and tumorigenicity of intestinal progenitors

    Get PDF
    Little is known about how pro-obesity diets regulate tissue stem and progenitor cell function. Here we find that high fat diet (HFD)-induced obesity augments the numbers and function of Lgr5+ intestinal stem-cells (ISCs) of the mammalian intestine. Mechanistically, HFD induces a robust peroxisome proliferator-activated receptor delta (PPAR-d) signature in intestinal stem and (non-ISC) progenitor cells, and pharmacologic activation of PPAR-d recapitulates the effects of a HFD on these cells. Like a HFD, ex vivo treatment of intestinal organoid cultures with fatty acid constituents of the HFD enhances the self-renewal potential of these organoid bodies in a PPAR-d dependent manner. Interestingly, HFD- and agonist-activated PPAR-d signaling endow organoid-initiating capacity to progenitors, and enforced PPAR-d signaling permits these progenitors to form in vivo tumors upon loss of the tumor suppressor Apc. These findings highlight how diet-modulated PPAR-d activation alters not only the function of intestinal stem and progenitor cells, but also their capacity to initiate tumors

    KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1

    Get PDF
    The mechanistic target of rapamycin complex 1 kinase (mTORC1) is a central regulator of cell growth that responds to diverse environmental signals and is deregulated in many human diseases, including cancer and epilepsy1–3. Amino acids are a key input, and act through the Rag GTPases to promote the translocation of mTORC1 to the lysosomal surface, its site of activation4. Multiple protein complexes regulate the Rag GTPases in response to amino acids, including GATOR1, a GTPase activating protein for RagA, and GATOR2, a positive regulator of unknown molecular function. Here, we identify a four-membered protein complex (KICSTOR) composed of the KPTN, ITFG2, C12orf66, and SZT2 gene products as required for amino acid or glucose deprivation to inhibit mTORC1 in cultured cells. In mice lacking SZT2, mTORC1 signaling is increased in several tissues, including in neurons in the brain. KICSTOR localizes to lysosomes; binds to GATOR1 and recruits it, but not GATOR2, to the lysosomal surface; and is necessary for the interaction of GATOR1 with its substrates, the Rag GTPases, and with GATOR2. Interestingly, several KICSTOR components are mutated in neurological diseases associated with mutations that lead to hyperactive mTORC1 signaling5–10. Thus, KICSTOR is a lysosome-associated negative regulator of mTORC1 signaling that, like GATOR1, is mutated in human disease11,12

    The Three Enigmas of Palestian Literature

    No full text
    As an introduction to the Journal’s literary feature, this contribution aims to shed light on recent scholarship on Palestinian literature with a view to integrating discussions of literature more concretely within the broader field of Palestine studies. The contribution structures the discussion of the articles by Amal Eqeiq and Nora Parr around three enigmas that preoccupy scholars of Palestinian literature: writing a national literature without a nation-state, writing silence and nonlinearity, and writing fragmentation and wholeness. It highlights that challenges for scholarship on Palestinian literature revolve around rethinking conventional categorizations, canonizations, and periodizations to better understand how a national literature emerged in a context of exile, fragmentation, and statelessness, and how processes of cultural production operate in extranational conditions

    Country of Words: Palestinian Literature in the Digital Age of the Refugee

    Get PDF
    The article reflects on how to embrace the unconventional, fragmented, scattered, transnational, exilic, and refugee elements of Palestinian Literature. Placing the refugees at the heart of the story of Palestinian literature raises serious questions about the compatibility of the national framework as the primary mode of analysis. The article explores the anatomy of Palestinian literature, including the wide array of sources, literary detective work, and expanded methodological toolbox needed to gather its fragments, and illustrates the potential of the digital sphere—drawing on the world of Digital Humanities—to house, express and visualize the data-fragments of Palestinian literature
    • …
    corecore