1,737 research outputs found

    Axes determination for segmented true-coaxial HPGe detectors

    Get PDF
    A fast method to determine the crystallographic axes of segmented true-coaxial high-purity germanium detectors is presented. It is based on the analysis of segment-occupancy patterns obtained by irradiation with radioactive sources. The measured patterns are compared to predictions for different axes orientations. The predictions require a simulation of the trajectories of the charge carriers taking the transverse anisotropy of their drift into account.Comment: 18 pages, 1 table, 31 figures; included background contribution to the occupancy patterns and systematic uncertainties, results slightly change

    Characterization of the first true coaxial 18-fold segmented n-type prototype detector for the GERDA project

    Get PDF
    The first true coaxial 18-fold segmented n-type HPGe prototype detector produced by Canberra-France for the GERDA neutrinoless double beta-decay project was tested both at Canberra-France and at the Max-Planck-Institut fuer Physik in Munich. The main characteristics of the detector are given and measurements concerning detector properties are described. A novel method to establish contacts between the crystal and a Kapton cable is presented.Comment: 21 pages, 16 Figures, to be submitted to NIM

    The GALATEA Test-Facility for High Purity Germanium Detectors

    Full text link
    GALATEA is a test facility designed to investigate bulk and surface effects in high purity germanium detectors. A vacuum tank houses an infrared screened volume with a cooled detector inside. A system of three stages allows an almost complete scan of the detector. The main feature of GALATEA is that there is no material between source and detector. This allows the usage of alpha and beta sources as well as of a laser beam to study surface effects. A 19-fold segmented true-coaxial germanium detector was used for commissioning

    Negative s and Light New Physics

    Full text link
    Motivated by the difference between SLD's recent measurement of ALR and the corresponding LEP results, we explore which kinds of new particles can (1) contribute dominantly to new physics through oblique corrections, (2) produce negative values for S and T, and (3) not be in conflict with any other experiments, on or off the Z resonance. We are typically led to models which involve new particles which are not much heavier than MZ/2, and so which may also have implications for other experiments in the near future. For such light particles, we show how the oblique-parameter analysis of purely Z-pole data requires the interpretation of the data in terms of modified parameters, S' and T', whose difference from S and T improves the available parameter space of the models.Comment: plain TeX, 16 pages, 6 figures attached as a uuencoded file, McGill-94/27, NEIP-94-00

    Speckle Interferometry of Metal-Poor Stars in the Solar Neighborhood. I

    Full text link
    We report the results of speckle-interferometric observations of 109 high proper-motion metal-poor stars made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. We resolve eight objects -- G102-20, G191-55, BD+19^\circ~1185A, G89-14, G87-45, G87-47, G111-38, and G114-25 -- into individual components and we are the first to astrometrically resolve seven of these stars. New resolved systems included two triple (G111-38, G87-47) and one quadruple (G89-14) star. The ratio of single-to-binary-to-triple-to-quadruple systems among the stars of our sample is equal to 71:28:6:1.Comment: 8 pages, 4 figures, accepted to Astrophysical Bulleti

    Simulation of semiconductor detectors in 3D with SolidStateDetectors.jl

    Full text link
    The open-source software package SolidStateDetectors.jl to calculate the fields and simulate the drifts of charge carriers in solid state detectors, together with the corresponding pulses, is introduced. The package can perform all calculations in full 3D while it can also make use of detector symmetries. The effect of the surroundings of a detector can also be studied. The package is programmed in the user friendly and performance oriented language Julia, such that 3D field calculations and drift simulations can be executed efficiently and in parallel. While all kinds of semiconductor devices can be simulated, special emphasis is put on germanium detectors. The verification of the package is shown for an n-type segmented point-contact germanium detector. Additional features of SolidStateDetectors.jl planned for the near future are listed.Comment: 21 pages, 9 figure

    Atmospheric velocity fields in tepid main sequence stars

    Full text link
    The line profiles of the stars with v sin i below a few km/s can reveal direct signatures of local velocity fields (e.g. convection) in stellar atmospheres. This effect is well established in cool main sequence stars, and has been detected and studied in three A stars. This paper reports observations of main sequence B, A and F stars with two goals: (1) to identify additional stars having sufficiently low values of v sin i to search for spectral line profile signatures of local velocity fields, and (2) to explore how the signatures of the local velocity fields in the atmosphere depend on stellar parameters such as effective temperature T_eff and peculiarity type. For stars having T_eff below about 10000 K, we always detect local atmospheric velocity fields indirectly through a non-zero microturbulence parameter, but not for hotter stars. Among the A and F stars in our sample having the sharpest lines, direct tracers of atmospheric velocity fields are found in six new stars. The velocity field signatures identified include asymmetric excess line wing absorption, deeper in the blue line wing than in the red; line profiles of strong lines that are poorly fit by computed profiles; and strong lines that are broader than they should be for the v sin i values deduced from weak lines. These effects are found in both normal and Am stars, but seem stronger in Am stars. These data still have not been satisfactorily explained by models of atmospheric convection, including numerical simulations.Comment: Acepted for publication by Astronomy and Astrophysic

    Anomalous behavior of pion production in high energy particle collisions

    Get PDF
    A shape of invariant differential cross section for charged hadron production as function of transverse momentum measured in various collider experiments is analyzed. Contrary to the behavior of produced charged kaons, protons and antiprotons, the pion spectra require an anomalously high contribution of an exponential term to describe the shape.Comment: 4 pages, 6 figure
    corecore