9 research outputs found

    A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation

    Get PDF
    Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P &lt; 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.</p

    A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation

    Get PDF
    Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P &lt; 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.</p

    A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: Blood samples and raw genetic data of neonatal subjects from each cohort are governed by their respective institutions and/or government agencies, and mostly could not be shared publicly without specific approvals. For example, for data from first author cohort, California Childhood Leukemia Study (CCLS), we respectfully are unable to share raw, individual genetic data freely with other investigators. Should we be contacted by other investigators who would like to use the data; we will direct them to the California Department of Public Health Institutional Review Board to establish their own approved protocol to utilize the data, which can then be shared peer-to-peer.Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.National Institute of Environmental Health SciencesNational Cancer InstituteUS Environmental Protection Agenc

    DNA methylation and aeroallergen sensitization: The chicken or the egg?

    No full text
    Background: DNA methylation (DNAm) is considered a plausible pathway through which genetic and environmental factors may influence the development of allergies. However, causality has yet to be determined as it is unknown whether DNAm is rather a cause or consequence of allergic sensitization. Here, we investigated the direction of the observed associations between well-known environmental and genetic determinants of allergy, DNAm, and aeroallergen sensitization using a combination of high-dimensional and causal mediation analyses. Methods: Using prospectively collected data from the German LISA birth cohort from two time windows (6–10&nbsp;years: N = 234; 10–15&nbsp;years: N = 167), we tested whether DNAm is a cause or a consequence of aeroallergen sensitization (specific immunoglobulin E &gt; 0.35kU/l) by conducting mediation analyses for both effect directions using maternal smoking during pregnancy, family history of allergies, and a polygenic risk score (PRS) for any allergic disease as exposure variables. We evaluated individual CpG sites (EPIC BeadChip) and allergy-related methylation risk scores (MRS) as potential mediators in the mediation analyses. We applied three high-dimensional mediation approaches (HIMA, DACT, gHMA) and validated results using causal mediation analyses. A replication of results was attempted in the Swedish BAMSE cohort. Results: Using high-dimensional methods, we identified five CpGs as mediators of prenatal exposures to sensitization with significant (adjusted p &lt; 0.05) indirect effects in the causal mediation analysis (maternal smoking: two CpGs, family history: one, PRS: two).&nbsp;None of these CpGs could be replicated in BAMSE.&nbsp;The effect of family history on allergy-related MRS was significantly mediated by aeroallergen sensitization (proportions mediated: 33.7–49.6%), suggesting changes in DNAm occurred post-sensitization. Conclusion: The results indicate that DNAm may be a cause or consequence of aeroallergen sensitization depending on genomic location. Allergy-related MRS, identified as a potential cause of sensitization, can be considered as a cross-sectional biomarker of disease. Differential DNAm in individual CpGs, identified as mediators of the development of sensitization, could be used as clinical predictors of disease development

    DNA methylation as a potential mediator of the association between prenatal tobacco and alcohol exposure and child neurodevelopment in a South African birth cohort.

    Get PDF
    Prenatal tobacco exposure (PTE) and prenatal alcohol exposure (PAE) have been associated with an increased risk of delayed neurodevelopment in children as well as differential newborn DNA methylation (DNAm). However, the biological mechanisms connecting PTE and PAE, DNAm, and neurodevelopment are largely unknown. Here we aim to determine whether differential DNAm mediates the association between PTE and PAE and neurodevelopment at 6 (N = 112) and 24 months (N = 184) in children from the South African Drakenstein Child Health Study. PTE and PAE were assessed antenatally using urine cotinine measurements and the ASSIST questionnaire, respectively. Cord blood DNAm was measured using the EPIC and 450 K BeadChips. Neurodevelopment (cognitive, language, motor, adaptive behavior, socioemotional) was measured using the Bayley Scales of Infant and Toddler Development, Third Edition. We constructed methylation risk scores (MRS) for PTE and PAE and conducted causal mediation analysis (CMA) with these MRS as mediators. Next, we conducted a high-dimensional mediation analysis to identify individual CpG sites as potential mediators, followed by a CMA to estimate the average causal mediation effects (ACME) and total effect (TE). PTE and PAE were associated with neurodevelopment at 6 but not at 24 months. PTE MRS reached a prediction accuracy (R2) of 0.23 but did not significantly mediate the association between PTE and neurodevelopment. PAE MRS was not predictive of PAE (R2 = 0.006). For PTE, 31 CpG sites and eight CpG sites were identified as significant mediators (ACME and TE P &lt; 0.05) for the cognitive and motor domains at 6 months, respectively. For PAE, 16 CpG sites and 1 CpG site were significant mediators for the motor and adaptive behavior domains at 6 months, respectively. Several of the associated genes, including MAD1L1, CAMTA1, and ALDH1A2 have been implicated in neurodevelopmental delay, suggesting that differential DNAm may partly explain the biological mechanisms underlying the relationship between PTE and PAE and child neurodevelopment

    DNA methylation and general psychopathology in childhood: An epigenome-wide meta-analysis from the PACE consortium

    No full text
    This is the author accepted manuscriptData availability: Site-level meta-analytical results will be made publicly available upon acceptance for publication. For access to cohort-level data, requests can be sent directly to individual studies. Code availability: Analytical codes can be requested from authors.The general psychopathology factor (GPF) has been proposed as a way to capture variance shared between psychiatric symptoms. Despite a growing body of evidence showing both genetic and environmental influences on GPF, the biological mechanisms underlying these influences remain unclear. In the current study, we conducted epigenome-wide meta-analyses to identify both probe- and region-level associations of DNA methylation (DNAm) with school-age general psychopathology in six cohorts from the Pregnancy And Childhood Epigenetics (PACE) Consortium. DNAm was examined both at birth (cord blood; prospective analysis) and during school-age (peripheral whole blood; cross-sectional analysis) in total samples of N=2,178 and N=2,190, respectively. At school-age, we identified one probe (cg11945228) located in the Bromodomain-containing protein 2 gene (BRD2) that negatively associated with GPF (p=8.58×10–8). We also identified a significant differentially methylated region (DMR) at school-age (p=1.63×10–8), implicating the SHC Adaptor Protein 4 (SHC4) gene and the EP300-interacting inhibitor of differentiation 1 (EID1) gene that have been previously implicated in multiple types of psychiatric disorders in adulthood, including obsessive compulsive disorder, schizophrenia, and major depressive disorder. In contrast, no prospective associations were identified with DNAm at birth. Taken together, results of this study revealed some evidence of an association between DNAm at school-age and GPF. Future research with larger samples is needed to further assess DNAm variation associated with GP

    A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation

    No full text
    Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.Peer reviewe
    corecore