37 research outputs found

    Magnetic Switching of Phase-Slip Dissipation in NbSe2 Nanobelts

    Full text link
    The stability of the superconducting dissipationless and resistive states in single-crystalline NbSe2 nanobelts is characterized by transport measurements in an external magnetic field (H). Current-driven electrical measurements show voltage steps, indicating the nucleation of phase-slip structures. Well below the critical temperature, the position of the voltage steps exhibits a sharp, periodic dependence as a function of H. This phenomenon is discussed in the context of two possible mechanisms: the interference of the order parameter and the periodic rearrangement of the vortex lattice within the nanobelt.Comment: 4 figure

    Polytype control of spin qubits in silicon carbide

    Get PDF
    Crystal defects can confine isolated electronic spins and are promising candidates for solid-state quantum information. Alongside research focusing on nitrogen vacancy centers in diamond, an alternative strategy seeks to identify new spin systems with an expanded set of technological capabilities, a materials driven approach that could ultimately lead to "designer" spins with tailored properties. Here, we show that the 4H, 6H and 3C polytypes of SiC all host coherent and optically addressable defect spin states, including spins in all three with room-temperature quantum coherence. The prevalence of this spin coherence shows that crystal polymorphism can be a degree of freedom for engineering spin qubits. Long spin coherence times allow us to use double electron-electron resonance to measure magnetic dipole interactions between spin ensembles in inequivalent lattice sites of the same crystal. Together with the distinct optical and spin transition energies of such inequivalent spins, these interactions provide a route to dipole-coupled networks of separately addressable spins.Comment: 28 pages, 5 figures, and supplementary information and figure

    The Principles of Social Order. Selected Essays of Lon L. Fuller, edited With an introduction by Kenneth I. Winston

    Get PDF
    The electron spins of semiconductor defects can have complex interactions with their host, particularly in polar materials like SiC where electrical and mechanical variables are intertwined. By combining pulsed spin resonance with ab initio simulations, we show that spin-spin interactions in 4H-SiC neutral divacancies give rise to spin states with a strong Stark effect, sub-10(-6) strain sensitivity, and highly spin-dependent photoluminescence with intensity contrasts of 15%-36%. These results establish SiC color centers as compelling systems for sensing nanoscale electric and strain fields

    Theoretical model of the dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide

    Full text link
    Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point defects in semiconductors is a key resource for both initializing nuclear quantum memories and producing nuclear hyperpolarization. DNP is therefore an important process in the field of quantum-information processing, sensitivity-enhanced nuclear magnetic resonance, and nuclear-spin-based spintronics. DNP based on optical pumping of point defects has been demonstrated by using the electron spin of nitrogen-vacancy (NV) center in diamond, and more recently, by using divacancy and related defect spins in hexagonal silicon carbide (SiC). Here, we describe a general model for these optical DNP processes that allows the effects of many microscopic processes to be integrated. Applying this theory, we gain a deeper insight into dynamic nuclear spin polarization and the physics of diamond and SiC defects. Our results are in good agreement with experimental observations and provide a detailed and unified understanding. In particular, our findings show that the defects' electron spin coherence times and excited state lifetimes are crucial factors in the entire DNP process

    High fidelity bi-directional nuclear qubit initialization in SiC

    Full text link
    Dynamic nuclear polarization (DNP) is an attractive method for initializing nuclear spins that are strongly coupled to optically active electron spins because it functions at room temperature and does not require strong magnetic fields. In this Letter, we demonstrate that DNP, with near-unity polarization efficiency, can be generally realized in weakly coupled hybrid registers, and furthermore that the nuclear spin polarization can be completely reversed with only sub-Gauss magnetic field variations. This mechanism offers new avenues for DNP-based sensors and radio-frequency free control of nuclear qubits

    Optical polarization of nuclear spins in silicon carbide

    Get PDF
    We demonstrate optically pumped dynamic nuclear polarization of 29-Si nuclear spins that are strongly coupled to paramagnetic color centers in 4H- and 6H-SiC. The 99 +/- 1% degree of polarization at room temperature corresponds to an effective nuclear temperature of 5 microKelvin. By combining ab initio theory with the experimental identification of the color centers' optically excited states, we quantitatively model how the polarization derives from hyperfine-mediated level anticrossings. These results lay a foundation for SiC-based quantum memories, nuclear gyroscopes, and hyperpolarized probes for magnetic resonance imaging.Comment: 21 pages including supplementary information; four figures in main text and one tabl
    corecore