The stability of the superconducting dissipationless and resistive states in
single-crystalline NbSe2 nanobelts is characterized by transport measurements
in an external magnetic field (H). Current-driven electrical measurements show
voltage steps, indicating the nucleation of phase-slip structures. Well below
the critical temperature, the position of the voltage steps exhibits a sharp,
periodic dependence as a function of H. This phenomenon is discussed in the
context of two possible mechanisms: the interference of the order parameter and
the periodic rearrangement of the vortex lattice within the nanobelt.Comment: 4 figure