121 research outputs found

    Ice core reconstruction of sea ice change in the Amundsen-Ross Seas since 1702 AD

    Get PDF
    Antarctic sea ice has been increasing in recent decades, but with strong regional differences in the expression of sea ice change. Declining sea ice in the Bellingshausen Sea since 1979 (the satellite era) has been linked to the observed warming on the Antarctic Peninsula, while the Ross Sea sector has seen a marked increase in sea ice during this period. Here we present a 308 year record of methansulphonic acid from coastal West Antarctica, representing sea ice conditions in the Amundsen-Ross Sea. We demonstrate that the recent increase in sea ice in this region is part of a longer trend, with an estimated ~1° northward expansion in winter sea ice extent (SIE) during the twentieth century and a total expansion of ~1.3° since 1702. The greatest reconstructed SIE occurred during the mid-1990s, with five of the past 30 years considered exceptional in the context of the past three centuries

    Ice core reconstruction of sea ice change in the Amundsen-Ross Seas since 1702 A.D.

    Get PDF
    Antarctic sea ice has been increasing in recent decades, but with strong regional differences in the expression of sea ice change. Declining sea ice in the Bellingshausen Sea since 1979 (the satellite era) has been linked to the observed warming on the Antarctic Peninsula, while the Ross Sea sector has seen a marked increase in sea ice during this period. Here we present a 308 year record of methansulphonic acid from coastal West Antarctica, representing sea ice conditions in the Amundsen-Ross Sea. We demonstrate that the recent increase in sea ice in this region is part of a longer trend, with an estimated ~1° northward expansion in winter sea ice extent (SIE) during the twentieth century and a total expansion of ~1.3° since 1702. The greatest reconstructed SIE occurred during the mid-1990s, with five of the past 30 years considered exceptional in the context of the past three centuries

    Century-scale perspectives on observed and simulated Southern Ocean sea ice trends from proxy reconstructions

    Get PDF
    Since 1979 when continuous satellite observations began, Southern Ocean sea ice cover has increased, whilst global coupled climate models simulate a decrease over the same period. It is uncertain whether the observed trends are anthropogenically forced or due to internal variability, or whether the apparent discrepancy between models and observations can be explained by internal variability. The shortness of the satellite record is one source of this uncertainty, and a possible solution is to use proxy reconstructions, which extend the analysis period but at the expense of higher observational uncertainty. In this work, we evaluate the utility for change detection of 20th century Southern Ocean sea ice proxies. We find that there are reliable proxies for the East Antarctic, Amundsen, Bellingshausen and Weddell sectors in late winter, and for the Weddell Sea in late autumn. Models and reconstructions agree that sea ice extent in the East Antarctic, Amundsen and Bellingshausen Seas has decreased since the early 1970s, consistent with an anthropogenic response. However, the decrease is small compared to internal variability, and the change is not robustly detectable. We also find that optimal fingerprinting filters out much of the uncertainty in proxy reconstructions. The Ross Sea is a confounding factor, with a significant increase in sea ice since 1979 that is not captured by climate models; however, existing proxy reconstructions of this region are not yet sufficiently reliable for formal change detection

    Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene

    Get PDF
    The Northern Hemisphere experienced dramatic changes during the last glacial, featuring vast ice sheets and abrupt climate events, while high northern latitudes during the last interglacial (Eemian) were warmer than today. Here we use high-resolution aerosol records from the Greenland NEEM ice core to reconstruct the environmental alterations in aerosol source regions accompanying these changes. Separating source and transport effects, we find strongly reduced terrestrial biogenic emissions during glacial times reflecting net loss of vegetated area in North America. Rapid climate changes during the glacial have little effect on terrestrial biogenic aerosol emissions. A strong increase in terrestrial dust emissions during the coldest intervals indicates higher aridity and dust storm activity in East Asian deserts. Glacial sea salt aerosol emissions in the North Atlantic region increase only moderately (50%), likely due to sea ice expansion. Lower aerosol concentrations in Eemian ice compared to the Holocene are mainly due to shortened atmospheric residence time, while emissions changed little.It is supported by funding agencies and institutions in Belgium (FNRS-CFB and FWO), Canada (NRCan/GSC), China (CAS), Denmark (FIST), France (IPEV, CNRS/INSU, CEA and ANR), Germany (AWI), Iceland (RannIs), Japan (NIPR), Korea (KOPRI), The Netherlands (NWO/ALW), Sweden (VR), Switzerland (SNF), United Kingdom (NERC), and the USA (US NSF, Office of Polar Programs). Long-term support of ice core research at the University of Bern by SNF is gratefully acknowledged

    Connections of climate change and variability to large and extreme forest fires in southeast Australia

    Get PDF
    The 2019/20 Black Summer bushfire disaster in southeast Australia was unprecedented: the extensive area of forest burnt, the radiative power of the fires, and the extraordinary number of fires that developed into extreme pyroconvective events were all unmatched in the historical record. Australia’s hottest and driest year on record, 2019, was characterised by exceptionally dry fuel loads that primed the landscape to burn when exposed to dangerous fire weather and ignition. The combination of climate variability and long-term climate trends generated the climate extremes experienced in 2019, and the compounding effects of two or more modes of climate variability in their fire-promoting phases (as occurred in 2019) has historically increased the chances of large forest fires occurring in southeast Australia. Palaeoclimate evidence also demonstrates that fire-promoting phases of tropical Pacific and Indian ocean variability are now unusually frequent compared with natural variability in preindustrial times. Indicators of forest fire danger in southeast Australia have already emerged outside of the range of historical experience, suggesting that projections made more than a decade ago that increases in climate-driven fire risk would be detectable by 2020, have indeed eventuated. The multiple climate change contributors to fire risk in southeast Australia, as well as the observed non-linear escalation of fire extent and intensity, raise the likelihood that fire events may continue to rapidly intensify in the future. Improving local and national adaptation measures while also pursuing ambitious global climate change mitigation efforts would provide the best strategy for limiting further increases in fire risk in southeast Australia

    Back to the future: Using long-term observational and paleo-proxy reconstructions to improve model projections of antarctic climate

    Get PDF
    Quantitative estimates of future Antarctic climate change are derived from numerical global climate models. Evaluation of the reliability of climate model projections involves many lines of evidence on past performance combined with knowledge of the processes that need to be represented. Routine model evaluation is mainly based on the modern observational period, which started with the establishment of a network of Antarctic weather stations in 1957/58. This period is too short to evaluate many fundamental aspects of the Antarctic and Southern Ocean climate system, such as decadal-to-century time-scale climate variability and trends. To help address this gap, we present a new evaluation of potential ways in which long-term observational and paleo-proxy reconstructions may be used, with a particular focus on improving projections. A wide range of data sources and time periods is included, ranging from ship observations of the early 20th century to ice core records spanning hundreds to hundreds of thousands of years to sediment records dating back 34 million years. We conclude that paleo-proxy records and long-term observational datasets are an underused resource in terms of strategies for improving Antarctic climate projections for the 21st century and beyond. We identify priorities and suggest next steps to addressing this.The Antarctic Climate Change in the 21st Century (AntClim21) Scientific Research Programme of the Scientific Committee on Antarctic Research are thanked for supporting the international scientific workshop at which the writing of this manuscript was initiated. This is a contribution to the PAGES 2k Network (through the CLIVASH 2k project). NJA acknowledges support by the Australian Research Council through a Future Fellowship (FT160100029) and the Centre of Excellence for Climate Extremes (CE170100023). SJP was supported under the Australian Research Council’s Special Research Initiative for the Antarctic Gateway Partnership (Project ID SR140300001). JMJ acknowledges support from the Leverhulme Trust through a Research Fellowship (RF-2018-183). FC acknowledges support from the PNRA national Italian projects PNRA16_00016, “WHISPERS” and project PNRA_00002, “ANTIPODE”. TJB, LS, and ERT were supported by the Natural Environment Research Council (NERC) as part of the British Antarctic Survey Polar Science for Planet Earth Programme. TJB additionally acknowledges support for this work as a contribution to the NERC grant NE/N01829X/1. IW thanks FAPESP 2015/50686-1, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) Finance Code 001 and CNPq 300970/2018-8, CNPq INCT Criosfera 704222/200

    Saving our marine archives

    Get PDF
    A concerted effort has begun to gather and preserve archives of marine samples and descriptive data, giving scientists ready access to insights on ancient environments

    Framing and Context of the Report

    Get PDF
    The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. Chapter 1: This special report assesses new knowledge since the IPCC 5th Assessment Report (AR5) and the Special Report on Global Warming of 1.5ºC (SR15) on how the ocean and cryosphere have and are expected to change with ongoing global warming, the risks and opportunities these changes bring to ecosystems and people, and mitigation, adaptation and governance options for reducing future risks. Chapter 1 provides context on the importance of the ocean and cryosphere, and the framework for the assessments in subsequent chapters of the report. All people on Earth depend directly or indirectly on the ocean and cryosphere. The fundamental roles of the ocean and cryosphere in the Earth system include the uptake and redistribution of anthropogenic carbon dioxide and heat by the ocean, as well as their crucial involvement of in the hydrological cycle. The cryosphere also amplifies climate changes through snow, ice and permafrost feedbacks. Services provided to people by the ocean and/or cryosphere include food and freshwater, renewable energy, health and wellbeing, cultural values, trade and transport. {1.1, 1.2, 1.5} Sustainable development is at risk from emerging and intensifying ocean and cryosphere changes. Ocean and cryosphere changes interact with each of the United Nations Sustainable Development Goals (SDGs). Progress on climate action (SDG 13) would reduce risks to aspects of sustainable development that are fundamentally linked to the ocean and cryosphere and the services they provide (high confidence1 ). Progress on achieving the SDGs can contribute to reducing the exposure or vulnerabilities of people and communities to the risks of ocean and cryosphere change (medium confidence). {1.1} Communities living in close connection with polar, mountain, and coastal environments are particularly exposed to the current and future hazards of ocean and cryosphere change. Coasts are home to approximately 28% of the global population, including around 11% living on land less than 10 m above sea level. Almost 10% of the global population lives in the Arctic or high mountain regions. People in these regions face the greatest exposure to ocean and cryosphere change, and poor and marginalised people here are particularly vulnerable to climate-related hazards and risks (very high confidence). The adaptive capacity of people, communities and nations is shaped by social, political, cultural, economic, technological, institutional, geographical and demographic factors. {1.1, 1.5, 1.6, Cross-Chapter Box 2 in Chapter 1} Ocean and cryosphere changes are pervasive and observedfrom high mountains, to the polar regions, to coasts, and intothe deep ocean. AR5 assessed that the ocean is warming (0 to700 m: virtually certain2; 700 to 2,000 m: likely), sea level is rising(high confidence), and ocean acidity is increasing (high confidence).Most glaciers are shrinking (high confidence), the Greenland andAntarctic ice sheets are losing mass (high confidence), sea ice extent inthe Arctic is decreasing (very high confidence), Northern Hemispheresnow cover is decreasing (very high confidence), and permafrosttemperatures are increasing (high confidence). Improvementssince AR5 in observation systems, techniques, reconstructions andmodel developments, have advanced scientific characterisationand understanding of ocean and cryosphere change, including inpreviously identified areas of concern such as ice sheets and AtlanticMeridional Overturning Circulation (AMOC). {1.1, 1.4, 1.8.1}Evidence and understanding of the human causes of climatewarming, and of associated ocean and cryosphere changes,has increased over the past 30 years of IPCC assessments (veryhigh confidence). Human activities are estimated to have causedapproximately 1.0ºC of global warming above pre-industrial levels(SR15). Areas of concern in earlier IPCC reports, such as the expectedacceleration of sea level rise, are now observed (high confidence).Evidence for expected slow-down of AMOC is emerging in sustainedobservations and from long-term palaeoclimate reconstructions(medium confidence), and may be related with anthropogenic forcingaccording to model simulations, although this remains to be properlyattributed. Significant sea level rise contributions from Antarctic icesheet mass loss (very high confidence), which earlier reports did notexpect to manifest this century, are already being observed. {1.1, 1.4}Ocean and cryosphere changes and risks by the end-of-century(2081?2100) will be larger under high greenhouse gas emissionscenarios, compared with low emission scenarios (very highconfidence). Projections and assessments of future climate, oceanand cryosphere changes in the Special Report on the Ocean andCryosphere in a Changing Climate (SROCC) are commonly basedon coordinated climate model experiments from the Coupled ModelIntercomparison Project Phase 5 (CMIP5) forced with RepresentativeConcentration Pathways (RCPs) of future radiative forcing. Currentemissions continue to grow at a rate consistent with a high emissionfuture without effective climate change mitigation policies (referredto as RCP8.5). The SROCC assessment contrasts this high greenhousegas emission future with a low greenhouse gas emission, highmitigation future (referred to as RCP2.6) that gives a two in threechance of limiting warming by the end of the century to less than 2oC above pre-industrial. {Cross-Chapter Box 1 in Chapter 1} Characteristics of ocean and cryosphere change include thresholds of abrupt change, long-term changes that cannot be avoided, and irreversibility (high confidence). Ocean warming, acidification and deoxygenation, ice sheet and glacier mass loss, and permafrost degradation are expected to be irreversible on time scales relevant to human societies and ecosystems. Long response times of decades to millennia mean that the ocean and cryosphere are committed to long-term change even after atmospheric greenhouse gas concentrations and radiative forcing stabilise (high confidence). Ice-melt or the thawing of permafrost involve thresholds (state changes) that allow for abrupt, nonlinear responses to ongoing climate warming (high confidence). These characteristics of ocean and cryosphere change pose risks and challenges to adaptation. {1.1, Box 1.1, 1.3} Societies will be exposed, and challenged to adapt, to changes in the ocean and cryosphere even if current and future efforts to reduce greenhouse gas emissions keep global warming well below 2ºC (very high confidence). Ocean and cryosphere-related mitigation and adaptation measures include options that address the causes of climate change, support biological and ecological adaptation, or enhance societal adaptation. Most ocean-based local mitigation and adaptation measures have limited effectiveness to mitigate climate change and reduce its consequences at the global scale, but are useful to implement because they address local risks, often have co-benefits such as biodiversity conservation, and have few adverse side effects. Effective mitigation at a global scale will reduce the need and cost of adaptation, and reduce the risks of surpassing limits to adaptation. Ocean-based carbon dioxide removal at the global scale has potentially large negative ecosystem consequences. {1.6.1, 1.6.2, Cross-Chapter Box 2 in Chapter 1} The scale and cross-boundary dimensions of changes in the ocean and cryosphere challenge the ability of communities, cultures and nations to respond effectively within existing governance frameworks (high confidence). Profound economic and institutional transformations are needed if climate-resilient development is to be achieved (high confidence). Changes in the ocean and cryosphere, the ecosystem services that they provide, the drivers of those changes, and the risks to marine, coastal, polar and mountain ecosystems, occur on spatial and temporal scales that may not align within existing governance structures and practices (medium confidence). This report highlights the requirements for transformative governance, international and transboundary cooperation, and greater empowerment of local communities in the governance of the ocean, coasts, and cryosphere in a changing climate. {1.5, 1.7, Cross-Chapter Box 2 in Chapter 1, Cross-Chapter Box 3 in Chapter 1} Robust assessments of ocean and cryosphere change, and the development of context-specific governance and response options, depend on utilising and strengthening all available knowledge systems (high confidence). Scientific knowledge from observations, models and syntheses provides global to local scale understandings of climate change (very high confidence). Indigenous knowledge (IK) and local knowledge (LK) provide context-specific and socio-culturally relevant understandings for effective responses and policies (medium confidence). Education and climate literacy enable climate action and adaptation (high confidence). {1.8, Cross-Chapter Box 4 in Chapter 1} Long-term sustained observations and continued modelling are critical for detecting, understanding and predicting ocean and cryosphere change, providing the knowledge to inform risk assessments and adaptation planning (high confidence). Knowledge gaps exist in scientific knowledge for important regions, parameters and processes of ocean and cryosphere change, including for physically plausible, high impact changes like high end sea level rise scenarios that would be costly if realised without effective adaptation planning and even then may exceed limits to adaptation. Means such as expert judgement, scenario building, and invoking multiple lines of evidence enable comprehensive risk assessments even in cases of uncertain future ocean and cryosphere changes.Fil: Abram, Nerilie. Australian National University; AustraliaFil: Gattuso, Jean Pierre. Centre National de la Recherche Scientifique; FranciaFil: Prakash, Anjal. Teri School Of Advanced Studies; IndiaFil: Cheng, Lijing. Chinese Academy Of Science; ChinaFil: Chidichimo, María Paz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval. Departamento Oceanografía; ArgentinaFil: Crate, Susan. George Mason University; Estados UnidosFil: Enomoto, H.. National Polar Agency; JapónFil: Garschagen, M.. Technische Universitat München; AlemaniaFil: Gruber, N.. Swiss Federal Institute of Technology Zurich; SuizaFil: Harper, S.. University Of Alberta. Faculty Of Agricultural, Life And Environmental Sciences. Departament Of Agricultural, Food And Nutritional Science.; CanadáFil: Holland, Elisabeth. University Of South Pacific; FiyiFil: Kudela, Raphael Martin. University of California at San Diego. Scripps Institution of Oceanography; Estados UnidosFil: Rice, Jake. University of Toronto; CanadáFil: Steffen, Konrad. Swiss Federal Institute for Forest, Snow and Landscape Research; SuizaFil: Von Schuckmann, Karina. Mercator Ocean International; Franci
    • …
    corecore