7 research outputs found

    Transport properties of water in hydroxypropyl methylcellulose

    No full text
    The relation between the self-diffusion coefficient, D-self, of water and the free volume hole size, V-h, has been investigated in a hydroxypropyl methylcellulose (HPMC)-water system in the water content range 0.08-0.36 w/w, at room temperature. Furthermore, the thermal properties of the water in the HPMC-water system, as measured with differential scanning calorimetry (DSC) and the tensile storage, E', and tensile loss, E '', moduli, of the HPMC-water systems, as determined with dynamic mechanical analysis (DMA), have been probed. Pulsed-field gradient nuclear magnetic resonance (PFG NMR) was used to measure the D-self of water and positron annihilation lifetime spectroscopy (PALS) was used to measure the ortho-Positronium (o-Ps) lifetime in the HPMC-water system. The glass transition temperature of the HPMC was found to be reduced by the water to room temperature in the water content range 0.10-0.15 w/w. The relation between ln D-self of water and the inverse free volume hole size of the HPMC-water system was non-linear. Furthermore, the PALS measurements showed that molecular water co-existed with water clusters in the HPMC-water system. (C) 2009 Elsevier Ltd. All rights reserved

    Structure and mobility in water plasticized poly(ethylene oxide)

    No full text
    The change in structure and mobility of poly(ethylene oxide) (PEO) containing 2 wt% of fumed silica and the water self-diffusion coefficient in concentrated PEO-water systems have been investigated at room temperature in the water weight fraction, w(w) range 0-0.50 w/w. Pulsed field gradient nuclear magnetic resonance was used to measure the self-diffusion coefficients. Structure and mobility properties of PEO were measured with differential scanning calorimetry as well as with positron annihilation lifetime spectroscopy. The largest reduction of the degree of crystallinity of PEO was observed when ww was increased from 0.13 w/w to 0.50 w/w. Moreover, water induced relaxation of the PEO segments in the amorphous phase, which seemed to have been strained by the crystals during compression molding. The water self-diffusion coefficient increased logarithmically with increased water content below water weight fractions in the amorphous phase of 0.30 w/w and the water molecules were obstructed by the crystalline phase

    Influence of Substitution Pattern on Solution Behavior of Hydroxypropyl Methylcellulose

    No full text
    Industrially produced hydroxypropyl Me cellulose (HPMC) is a chem. heterogeneous material, and it is thus difficult to predict parameters related to function on the basis of the polymer's av. chem. values. In this study, the soln. behavior of 7 HPMC batches was correlated to the mol. wt., degree of substitution, and substituent pattern. The initial onset of phase sepn., so-called clouding, generally followed an increased av. mol. wt. and degree of substitution. However, the slope of the clouding curve was affected by the substitution pattern, where the heterogeneously substituted batches had very shallow slopes. Further investigations showed that the appearance of a shallow slope of the clouding curve was a result of the formation of reversible polymer structures, formed as a result of the heterogeneous substituent pattern. These structures grew in size with temp. and concn. and resulted in an increase in the viscosity of the solns. at higher temps

    Responsive Hyaluronic Acid-Ethylacrylamide Microgels Fabricated Using Microfluidics Technique

    No full text
    Volume changes of responsive microgels can probe interactions between polyelectrolytes and species of opposite charges such as peptides and proteins. We have investigated a microfluidics method to synthesize highly responsive, covalently crosslinked, hyaluronic acid microgels for such purposes. Sodium hyaluronate (HA), pre-modified with ethylacrylamide functionalities, was crosslinked in aqueous droplets created with a microfluidic technique. We varied the microgel properties by changing the degree of modification and concentration of HA in the reaction mixture. The degree of modification was determined by H-1 NMR. Light microscopy was used to investigate the responsiveness of the microgels to osmotic stress in aqueous saline solutions by simultaneously monitoring individual microgel species in hydrodynamic traps. The permeability of the microgels to FITC-dextrans of molecular weights between 4 and 250 kDa was investigated using confocal laser scanning microscopy. The results show that the microgels were spherical with diameters between 100 and 500 mu m and the responsivity tunable by changing the degree of modification and the HA concentration. Microgels were fully permeable to all investigated FITC-dextran probes. The partitioning to the microgel from an aqueous solution decreased with the increasing molecular weight of the probe, which is in qualitative agreement with theories of homogeneous gel networks

    Mechanistic modelling of drug release from a polymer matrix using magnetic resonance microimaging.

    No full text
    In this paper a new model describing drug release from a polymer matrix tablet is presented. The utilization of the model is described as a two step process where, initially, polymer parameters are obtained from a previously published pure polymer dissolution model. The results are then combined with drug parameters obtained from literature data in the new model to predict solvent and drug concentration profiles and polymer and drug release profiles. The modelling approach was applied to the case of a HPMC matrix highly loaded with mannitol (model drug). The results showed that the drug release rate can be successfully predicted, using the suggested modelling approach. However, the model was not able to accurately predict the polymer release profile, possibly due to the sparse amount of usable pure polymer dissolution data. In addition to the case study, a sensitivity analysis of model parameters relevant to drug release was performed. The analysis revealed important information that can be useful in the drug formulation process

    Microfluidics platform for studies of peptide - polyelectrolyte interaction

    No full text
    Subcutaneous injection is one of the most common approaches for administering biopharmaceuticals unsuitable for oral delivery. However, there is a lack of methods to predict the behavior of biopharmaceuticals within the extracellular matrix of the subcutaneous tissue. In this work, we present a novel miniaturized microfluidic-based in vitro method able to investigate interactions between drug molecules and the polymers of the subcutaneous extracellular matrix. To validate the method, microgels consisting of, respectively, covalently cross-linked hy-aluronic acid, polyacrylic acid, and commercially available DC BeadTM, were exposed to three model substances: cytochrome C, protamine sulfate and amitriptyline hydrochloride. These components were chosen to include systems with widely different physiochemical properties (charge, size, self-assembly, etc.) The experimental results were compared with theoretical predictions from a gel model developed earlier. The results show that the method is suitable as a rapid screening method for automated, large-scale, probing of interactions between biopolymers and drug molecules, with small consumption of material
    corecore