13,520 research outputs found

    Thickness dependent magnetotransport in ultra-thin manganite films

    Full text link
    To understand the near-interface magnetism in manganites, uniform, ultra-thin films of La_{0.67}Sr_{0.33}MnO_3 were grown epitaxially on single crystal (001) LaAlO_3 and (110) NdGaO_3 substrates. The temperature and magnetic field dependent film resistance is used to probe the film's structural and magnetic properties. A surface and/or interface related dead-layer is inferred from the thickness dependent resistance and magnetoresistance. The total thickness of the dead layer is estimated to be 30A˚\sim 30 \AA for films on NdGaO_3 and 50A˚\sim 50 \AA for films on LaAlO_3.Comment: 11 pages, 4 figure

    The true nature of the alleged planetary nebula W16-185

    Full text link
    We report the discovery of a small cluster of massive stars embedded in a NIR nebula in the direction of the IRAS15411-5352 point source, which is related to the alleged planetary nebula W16-185. The majority of the stars present large NIR excess characteristic of young stellar objects and have bright counterparts in the Spitzer IRAC images; the most luminous star (IRS1) is the NIR counterpart of the IRAS source. We found very strong unresolved Brgamma emission at the IRS1 position and more diluted and extended emission across the continuum nebula. From the sizes and electron volume densities we concluded that they represent ultra-compact and compact HII regions, respectively. Comparing the Brgamma emission with the 7 mm free-free emission, we estimated that the visual extinction ranges between 14 and 20 mag. We found that only one star (IRS1) can provide the number of UV photons necessary to ionize the nebula.Comment: 30 pages, 15 figures, 2 tables V3: minor grammatical changes. Figure 4 is available in pdf file. Accepted for publication in AJ, April / 200

    Matching Conditions in Atomistic-Continuum Modeling of Materials

    Full text link
    A new class of matching condition between the atomistic and continuum regions is presented for the multi-scale modeling of crystals. They ensure the accurate passage of large scale information between the atomistic and continuum regions and at the same time minimize the reflection of phonons at the interface. These matching conditions can be made adaptive if we choose appropriate weight functions. Applications to dislocation dynamics and friction between two-dimensional atomically flat crystal surfaces are described.Comment: 6 pages, 4 figure

    The Poisson Bracket for Poisson Forms in Multisymplectic Field Theory

    Full text link
    We present a general definition of the Poisson bracket between differential forms on the extended multiphase space appearing in the geometric formulation of first order classical field theories and, more generally, on exact multisymplectic manifolds. It is well defined for a certain class of differential forms that we propose to call Poisson forms and turns the space of Poisson forms into a Lie superalgebra.Comment: 40 pages LaTe

    Generic local distinguishability and completely entangled subspaces

    Full text link
    A subspace of a multipartite Hilbert space is completely entangled if it contains no product states. Such subspaces can be large with a known maximum size, S, approaching the full dimension of the system, D. We show that almost all subspaces with dimension less than or equal to S are completely entangled, and then use this fact to prove that n random pure quantum states are unambiguously locally distinguishable if and only if n does not exceed D-S. This condition holds for almost all sets of states of all multipartite systems, and reveals something surprising. The criterion is identical for separable and for nonseparable states: entanglement makes no difference.Comment: 12 page

    Variation of turbulent burning rate of methane, methanol, and iso-octane air mixtures with equivalence ratio at elevated pressure

    Get PDF
    Turbulent burning velocities for premixed methane, methanol, and iso-octane/air mixtures have been experimentally determined for an rms turbulent velocity of 2 m/s and pressure of 0.5 MPa for a wide range of equivalence ratios. Turbulent burning velocity data were derived using high-speed schlieren photography and transient pressure recording; measurements were processed to yield a turbulent mass rate burning velocity, utr. The consistency between the values derived using the two techniques, for all fuels for both fuel-lean and fuel-rich mixtures, was good. Laminar burning measurements were made at the same pressure, temperature, and equivalence ratios as the turbulent cases and laminar burning velocities and Markstein numbers were determined. The equivalence ratio (φ) for peak turbulent burning velocity proved not always coincident with that for laminar burning velocity for the same fuel; for isooctane, the turbulent burning velocity unexpectedly remained high over the range φ = 1 to 2. The ratio of turbulent to laminar burning velocity proved remarkably high for very rich iso-octane/air and lean methane/air mixtures

    Supertubes

    Get PDF
    It is shown that a IIA superstring carrying D0-brane charge can be `blown-up', in a {\it Minkowski vacuum} background, to a (1/4)-supersymmetric tubular D2-brane, supported against collapse by the angular momentum generated by crossed electric and magnetic Born-Infeld fields. This `supertube' can be viewed as a worldvolume realization of the sigma-model Q-lump.Comment: Revision includes mention of some configurations dual to the supertub

    On the transition from complex to real scalar fields in modern cosmology

    Full text link
    We study some problems arising from the introduction of a complex scalar field in cosmology, modelling its possible behaviors in both the inflationary and dark energy stages of the universe. Such examples contribute to show that, while the complex nature of the scalar field can be indeed important during inflation, it loses its meaning in the later dark-energy dominated era of cosmology, when the phase of the complex field is practically constant, and there is indeed a transition from complex to real scalar field. In our considerations, the Noether symmetry approach turns out to be a useful tool once again. We arrive eventually at a potential containing the sixth and fourth powers of the scalar field, and the resulting semiclassical quantum cosmology is studied to gain a better understanding of the inflationary stage.Comment: 21 pages, 6 figures. In the new version, sections I, IV and VI have been improved, and two words have been added at the beginning of the titl

    Self-forces from generalized Killing fields

    Full text link
    A non-perturbative formalism is developed that simplifies the understanding of self-forces and self-torques acting on extended scalar charges in curved spacetimes. Laws of motion are locally derived using momenta generated by a set of generalized Killing fields. Self-interactions that may be interpreted as arising from the details of a body's internal structure are shown to have very simple geometric and physical interpretations. Certain modifications to the usual definition for a center-of-mass are identified that significantly simplify the motions of charges with strong self-fields. A derivation is also provided for a generalized form of the Detweiler-Whiting axiom that pointlike charges should react only to the so-called regular component of their self-field. Standard results are shown to be recovered for sufficiently small charge distributions.Comment: 21 page

    Microwave Electronics

    Get PDF
    Contains reports on two research projects.U. S. ArmyLincoln Laboratory, Purchase Order DDL B-00306U. S. Navy (Office of Naval Research) under Contract Nonr-1841(49)U. S. Air Force under Air Force Contract AF19(604)-5200U. S. Nav
    corecore