2,719 research outputs found

    The financialization of international law

    Get PDF
    We investigate how the international investment regime turned into an investment vehicle. Through the process called third-party funding, financiers back international legal claims by firms against countries and in turn seek a share of any potential award. More generally, we add to debates on how international regimes evolve and at times generate unanticipated consequences. Building off work on the sociology of fields, we argue that institutional change can occur when individuals from different fields interact. Each field has its own local practices and beliefs about how governance institutions like international regimes function. When professionals from one field analyze problems in another, they use the tools from their native field. If potential solutions provide material and status benefits for the dominant actors in the targeted regime, cross-field coalitions can form and change the targeted regime’s practice. As hedge funds in the finance field and lawyers in the international law field sought to reinvent themselves after the 2008 financial crisis, they teamed up to make Investor State Dispute Settlement a speculator’s game. Theoretically, we embed theories of regime change within larger social relations, highlighting the importance of informal interactions among regime operators for the use and function of governance institutions. We underscore the role of field interdependence as actors engage in contestation across social and political domains. Empirically, we demonstrate the way in which financialization has had far-reaching consequences that extend well beyond traditional economic sectors, reconfiguring the practice of international law

    New Hamiltonian formalism and quasi-local conservation equations of general relativity

    Full text link
    I describe the Einstein's gravitation of 3+1 dimensional spacetimes using the (2,2) formalism without assuming isometries. In this formalism, quasi-local energy, linear momentum, and angular momentum are identified from the four Einstein's equations of the divergence-type, and are expressed geometrically in terms of the area of a two-surface and a pair of null vector fields on that surface. The associated quasi-local balance equations are spelled out, and the corresponding fluxes are found to assume the canonical form of energy-momentum flux as in standard field theories. The remaining non-divergence-type Einstein's equations turn out to be the Hamilton's equations of motion, which are derivable from the {\it non-vanishing} Hamiltonian by the variational principle. The Hamilton's equations are the evolution equations along the out-going null geodesic whose {\it affine} parameter serves as the time function. In the asymptotic region of asymptotically flat spacetimes, it is shown that the quasi-local quantities reduce to the Bondi energy, linear momentum, and angular momentum, and the corresponding fluxes become the Bondi fluxes. The quasi-local angular momentum turns out to be zero for any two-surface in the flat Minkowski spacetime. I also present a candidate for quasi-local {\it rotational} energy which agrees with the Carter's constant in the asymptotic region of the Kerr spacetime. Finally, a simple relation between energy-flux and angular momentum-flux of a generic gravitational radiation is discussed, whose existence reflects the fact that energy-flux always accompanies angular momentum-flux unless the flux is an s-wave.Comment: 36 pages, 3 figures, RevTex

    Depinning transition of a directed polymer by a periodic potential: a d-dimensional solution

    Full text link
    We study the depinning phase transition of a directed polymer in a dd-dimensional space by a periodic potential localized on a straight line. We give exact formulas in all dimensions for the critical pinning we need to localize the polymer. We show that a bounded state can still arise even if, in average, the potential layer is not attractive and for diverging values of the potential on the repulsive sites. The phase transition is of second order.Comment: 11 Pages in LaTeX. Figures available from the authors. [email protected] (e-mail address

    A microscopic model for thin film spreading

    Get PDF
    A microscopic, driven lattice gas model is proposed for the dynamics and spatio-temporal fluctuations of the precursor film observed in spreading experiments. Matter is transported both by holes and particles, and the distribution of each can be described by driven diffusion with a moving boundary. This picture leads to a stochastic partial differential equation for the shape of the boundary, which agrees with the simulations of the lattice gas. Preliminary results for flow in a thermal gradient are discussed.Comment: 4 pages, 3 figures. Submitte

    A Community-Building Framework for Collaborative Research Coordination across the Education and Biology Research Disciplines

    Get PDF
    Since 2009, the U.S. National Science Foundation Directorate for Biological Sciences has funded Research Coordination Networks (RCN) aimed at collaborative efforts to improve participation, learning, and assessment in undergraduate biology education (UBE). RCN-UBE projects focus on coordination and communication among scientists and educators who are fostering improved and innovative approaches to biology education. When faculty members collaborate with the overarching goal of advancing undergraduate biology education, there is a need to optimize collaboration between participants in order to deeply integrate the knowledge across disciplinary boundaries. In this essay we propose a novel guiding framework for bringing colleagues together to advance knowledge and its integration across disciplines, the “Five ‘C’s’ of Collaboration: Commitment, Collegiality, Communication, Consensus, and Continuity.” This guiding framework for professional network practice is informed by both relevant literature and empirical evidence from community-building experience within the RCN-UBE Advancing Competencies in Experimentation–Biology (ACE-Bio) Network. The framework is presented with practical examples to illustrate how it might be used to enhance collaboration between new and existing participants in the ACE-Bio Network as well as within other interdisciplinary networks

    The Basic Competencies of Biological Experimentation: Concept-Skill Statements

    Get PDF
    This biological experimentation competencies map is a model created by members of the ACE-Bio Network of seven areas a competent biologist calls in when doing experimentation in biology. Each competency is represented by a summary word on a uniquely colored segment of the model. For presentation convenience, the seven major areas within experimentation in biology are mapped onto tables in a linear manner. However, this is not meant to convey a particular order that one must follow during experimentation. The areas are given equal weight and flexible order of their use throughout the process of experimentation. This work is meant to provide a framework for ACE Bio Network participants and other instructors or academic leaders in the biological sciences to study implementation of experimentation activities and assessments across diverse institutional and curricular contexts. In addition to the document in pdf format, another link provides the file in MSWord format so that users can easily modify it to guide assessment of student learning about experimentation, undergraduate biology instruction, curriculum development, professional faculty development, program evaluation, or review of research literature in a way that is appropriate to their own context

    Nonequilibrium wetting

    Full text link
    When a nonequilibrium growing interface in the presence of a wall is considered a nonequilibrium wetting transition may take place. This transition can be studied trough Langevin equations or discrete growth models. In the first case, the Kardar-Parisi-Zhang equation, which defines a very robust universality class for nonequilibrium moving interfaces, with a soft-wall potential is considered. While in the second, microscopic models, in the corresponding universality class, with evaporation and deposition of particles in the presence of hard-wall are studied. Equilibrium wetting is related to a particular case of the problem, it corresponds to the Edwards-Wilkinson equation with a potential in the continuum approach or to the fulfillment of detailed balance in the microscopic models. In this review we present the analytical and numerical methods used to investigate the problem and the very rich behavior that is observed with them.Comment: Review, 36 pages, 16 figure

    Oxford SWIFT IFS and multi-wavelength observations of the Eagle galaxy at z=0.77

    Full text link
    The `Eagle' galaxy at a redshift of 0.77 is studied with the Oxford Short Wavelength Integral Field Spectrograph (SWIFT) and multi-wavelength data from the All-wavelength Extended Groth strip International Survey (AEGIS). It was chosen from AEGIS because of the bright and extended emission in its slit spectrum. Three dimensional kinematic maps of the Eagle reveal a gradient in velocity dispersion which spans 35-75 +/- 10 km/s and a rotation velocity of 25 +/- 5 km/s uncorrected for inclination. Hubble Space Telescope images suggest it is close to face-on. In comparison with galaxies from AEGIS at similar redshifts, the Eagle is extremely bright and blue in the rest-frame optical, highly star-forming, dominated by unobscured star-formation, and has a low metallicity for its size. This is consistent with its selection. The Eagle is likely undergoing a major merger and is caught in the early stage of a star-burst when it has not yet experienced metal enrichment or formed the mass of dust typically found in star-forming galaxies.Comment: accepted for publication in MNRA

    Host galaxy morphologies of X-ray selected AGN: assessing the significance of different black hole fueling mechanisms to the accretion density of the Universe at z~1

    Full text link
    We use morphological information of X-ray selected AGN hosts to set limits on the fraction of the accretion density of the Universe at z~1 that is not likely to be associated with major mergers. Deep X-ray observations are combined with high resolution optical data from the Hubble Space Telescope in the AEGIS, GOODS North and GOODS South fields to explore the morphological breakdown of X-ray sources in the redshift interval 0.5<z<1.3. The sample is split into disks, early-type bulge dominated galaxies, peculiar systems and point-sources in which the nuclear source outshines the host galaxy. The X-ray luminosity function and luminosity density of AGN at z~1 are then calculated as a function of morphological type. We find that disk-dominated hosts contribute 30\pm9 per cent to the total AGN space density and 23\pm6 per cent to the luminosity density at z~1. We argue that AGN in disk galaxies are most likely fueled not by major merger events but by minor interactions or internal instabilities. We find evidence that these mechanisms may be more efficient in producing luminous AGN (L_X>1e44 erg/s) compared to predictions for the stochastic fueling of massive black holes in disk galaxies.Comment: Accepted for publication in MNRA
    corecore