11 research outputs found

    COVID-19 trajectories among 57 million adults in England: a cohort study using electronic health records

    Get PDF
    BACKGROUND: Updatable estimates of COVID-19 onset, progression, and trajectories underpin pandemic mitigation efforts. To identify and characterise disease trajectories, we aimed to define and validate ten COVID-19 phenotypes from nationwide linked electronic health records (EHR) using an extensible framework. METHODS: In this cohort study, we used eight linked National Health Service (NHS) datasets for people in England alive on Jan 23, 2020. Data on COVID-19 testing, vaccination, primary and secondary care records, and death registrations were collected until Nov 30, 2021. We defined ten COVID-19 phenotypes reflecting clinically relevant stages of disease severity and encompassing five categories: positive SARS-CoV-2 test, primary care diagnosis, hospital admission, ventilation modality (four phenotypes), and death (three phenotypes). We constructed patient trajectories illustrating transition frequency and duration between phenotypes. Analyses were stratified by pandemic waves and vaccination status. FINDINGS: Among 57 032 174 individuals included in the cohort, 13 990 423 COVID-19 events were identified in 7 244 925 individuals, equating to an infection rate of 12·7% during the study period. Of 7 244 925 individuals, 460 737 (6·4%) were admitted to hospital and 158 020 (2·2%) died. Of 460 737 individuals who were admitted to hospital, 48 847 (10·6%) were admitted to the intensive care unit (ICU), 69 090 (15·0%) received non-invasive ventilation, and 25 928 (5·6%) received invasive ventilation. Among 384 135 patients who were admitted to hospital but did not require ventilation, mortality was higher in wave 1 (23 485 [30·4%] of 77 202 patients) than wave 2 (44 220 [23·1%] of 191 528 patients), but remained unchanged for patients admitted to the ICU. Mortality was highest among patients who received ventilatory support outside of the ICU in wave 1 (2569 [50·7%] of 5063 patients). 15 486 (9·8%) of 158 020 COVID-19-related deaths occurred within 28 days of the first COVID-19 event without a COVID-19 diagnoses on the death certificate. 10 884 (6·9%) of 158 020 deaths were identified exclusively from mortality data with no previous COVID-19 phenotype recorded. We observed longer patient trajectories in wave 2 than wave 1. INTERPRETATION: Our analyses illustrate the wide spectrum of disease trajectories as shown by differences in incidence, survival, and clinical pathways. We have provided a modular analytical framework that can be used to monitor the impact of the pandemic and generate evidence of clinical and policy relevance using multiple EHR sources. FUNDING: British Heart Foundation Data Science Centre, led by Health Data Research UK

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    An association study of common variation at theMAPTlocus with late-onset Alzheimer's disease

    No full text
    The MAPT gene that encodes Tau is located on chromosome 17q21, in a region, which has evolved to form two major haplotypes, H1 and H2. There is strong evidence that the H1 haplotype, and a sub-haplotype (H1C), are overrepresented and associated with increased risk for the sporadic tauopathies, progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Both PSP and CBD cases display Tau pathology similar to Late-Onset Alzheimer's Disease (LOAD). However, numerous association studies investigating the genetic involvement of MAPT in LOAD have generated conflicting results. Here we have used a large LOAD case–control sample to genotype SNPs that have been shown to define H1/H2 status and intra-H1 variability. Single marker association analyses found no evidence that any of the SNPs are associated with risk of LOAD. When gender and APOE4 status were taken into account we observed suggestive association for SNP rs242557 (P = 0.02). Stratification of the sample revealed association with rs242557 only in APOE4 positive individuals (P  = 0.01 recessive model), however this result would not survive multiple correction. There was no significant difference in H1/H2 haplotype distribution between cases and controls. We also tested the association of specific sub-haplotypes on the H1 background and likewise results were negative. No effect was observed on disease age of onset for any of the markers studied. In summary, we find no evidence for allelic or haplotypic association, with SNPs in the MAPT gene and LOAD. SNP rs242557 is nominally significant in the APOE4 positive individuals. None of the SNPs studied modified AAO for LOAD

    Distribution and expression of picalm in alzheimer disease

    No full text
    PICALM, the gene encoding phosphatidylinositol-binding clathrin assembly (picalm) protein, was recently shown to be associated with risk of Alzheimer disease (AD). Picalm is a key component of clathrin-mediated endocytosis. It recruits clathrin and adaptor protein 2 (AP-2) to the plasma membrane and, along with, AP-2 recognizes target proteins. The attached clathrin triskelions cause membrane deformation around the target proteins enclosing them within clathrin-coated vesicles to be processed in lysosomes or endosomes. We examined the distribution of picalm in control and AD brain tissue and measured levels of picalm messenger RNA (mRNA) by real-time polymerase chain reaction. Immunolabeling of brain tissue showed that picalm is predominately present in endothelial cells. This was further supported by the demonstration of picalm in human cerebral microvascular cells grown in culture. Picalm mRNA was elevated in relation to glyceraldehyde-3-phosphate dehydrogenase but not factor VIII-related antigen or CD31 mRNA in the frontal cortex in AD. No change was seen in the temporal cortex or thalamus. The transport of Aβ across vessel walls and into the bloodstream is a major pathway of Aβ removal from the brain and picalm is ideally situated within endothelial cells to participate in this process. Further research is needed to determine whether PICALM expression is influenced by Aβ levels and whether it affects Aβ uptake and transport by endothelial cells

    Association analysis of 528 intra-genic SNPs in a region of chromosome 10 linked to late onset Alzheimer's disease

    No full text
    Late-onset Alzheimer's disease (LOAD) is a genetically complex neurodegenerative disorder. Currently, only the epsilon4 allele of the Apolipoprotein E gene has been identified unequivocally as a genetic susceptibility factor for LOAD. Others remain to be found. In 2002 we observed genome-wide significant evidence of linkage to a region on chromosome 10q11.23-q21.3 [Myers et al. (2002) Am J Med Genet 114:235-244]. Our objective in this study was to test every gene within the maximum LOD-1 linkage region, for association with LOAD. We obtained results for 528 SNPs from 67 genes, with an average density of 1 SNP every 10 kb within the genes. We demonstrated nominally significant association with LOAD for 4 SNPs: rs1881747 near DKK1 (P = 0.011, OR = 1.24), rs2279420 in ANK3 (P = 0.022, OR = 0.79), rs2306402 in CTNNA3 (P = 0.024, OR = 1.18), and rs5030882 in CXXC6 (P = 0.046, OR = 1.29) in 1,160 cases and 1,389 controls. These results would not survive correction for multiple testing but warrant attempts at confirmation in independent samples

    Genome-wide analysis of genetic loci associated with Alzheimer Disease

    No full text
    Context Genome-wide association studies (GWAS) have recently identified CLU, PICALM, and CR1 as novel genes for late-onset Alzheimer disease (AD). Objectives To identify and strengthen additional loci associated with AD and confirm these in an independent sample and to examine the contribution of recently identified genes to AD risk prediction in a 3-stage analysis of new and previously published GWAS on more than 35 000 persons (8371 AD cases). Design, Setting, and Participants In stage 1, we identified strong genetic associations (P < 10−3) in a sample of 3006 AD cases and 14 642 controls by combining new data from the population-based Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (1367 AD cases [973 incident]) with previously reported results from the Translational Genomics Research Institute and the Mayo AD GWAS. We identified 2708 single-nucleotide polymorphisms (SNPs) with P<10−3. In stage 2, we pooled results for these SNPs with the European AD Initiative (2032 cases and 5328 controls) to identify 38 SNPs (10 loci) with P<10−5. In stage 3, we combined data for these 10 loci with data from the Genetic and Environmental Risk in AD consortium (3333 cases and 6995 controls) to identify 4 SNPs with P<1.7×10−8. These 4 SNPs were replicated in an independent Spanish sample (1140 AD cases and 1209 controls). Genome-wide association analyses were completed in 2007-2008 and the meta-analyses and replication in 2009. Main Outcome Measure Presence of Alzheimer disease. Results Two loci were identified to have genome-wide significance for the first time: rs744373 near BIN1 (odds ratio [OR],1.13; 95% confidence interval [CI],1.06-1.21 per copy of the minor allele; P = 1.59×10−11) and rs597668 near EXOC3L2/BLOC1S3/MARK4 (OR, 1.18; 95% CI, 1.07-1.29; P = 6.45×10−9). Associations of these 2 loci plus the previously identified loci CLU and PICALM with AD were confirmed in the Spanish sample (P < .05). However, although CLU and PICALM were confirmed to be associated with AD in this independent sample, they did not improve the ability of a model that included age, sex, and APOE to predict incident AD (improvement in area under the receiver operating characteristic curve from 0.847 to 0.849 in the Rotterdam Study and 0.702 to 0.705 in the Cardiovascular Health Study). Conclusions Two genetic loci for AD were found for the first time to reach genome-wide statistical significance. These findings were replicated in an independent population. Two recently reported associations were also confirmed. These loci did not improve AD risk prediction. While not clinically useful, they may implicate biological pathways useful for future research

    Erratum: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease [Corrigendum]

    No full text

    The role of variation at AbPP, PSEN1, PSEN2 and MAPT in late onset Alzheimer's Disease

    Get PDF
    Rare mutations in AβPP, PSEN1, and PSEN2 cause uncommon early onset forms of Alzheimer's disease (AD), and common variants in MAPT are associated with risk of other neurodegenerative disorders. We sought to establish whether common genetic variation in these genes confer risk to the common form of AD which occurs later in life (>65 years). We therefore tested single-nucleotide polymorphisms at these loci for association with late-onset AD (LOAD) in a large case-control sample consisting of 3,940 cases and 13,373 controls. Single-marker analysis did not identify any variants that reached genome-wide significance, a result which is supported by other recent genome-wide association studies. However, we did observe a significant association at the MAPT locus using a gene-wide approach (p = 0.009). We also observed suggestive association between AD and the marker rs9468, which defines the H1 haplotype, an extended haplotype that spans the MAPT gene and has previously been implicated in other neurodegenerative disorders including Parkinson's disease, progressive supranuclear palsy, and corticobasal degeneration. In summary common variants at AβPP, PSEN1, and PSEN2 and MAPT are unlikely to make strong contributions to susceptibility for LOAD. However, the gene-wide effect observed at MAPT indicates a possible contribution to disease risk which requires further study
    corecore