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Abstract. Rare mutations in AβPP, PSEN1, and PSEN2 cause uncommon early onset forms of Alzheimer’s disease (AD), and
common variants in MAPT are associated with risk of other neurodegenerative disorders. We sought to establish whether common
genetic variation in these genes confer risk to the common form of AD which occurs later in life (>65 years). We therefore
tested single-nucleotide polymorphisms at these loci for association with late-onset AD (LOAD) in a large case-control sample
consisting of 3,940 cases and 13,373 controls. Single-marker analysis did not identify any variants that reached genome-wide
significance, a result which is supported by other recent genome-wide association studies. However, we did observe a significant
association at the MAPT locus using a gene-wide approach (p = 0.009). We also observed suggestive association between AD and
the marker rs9468, which defines the H1 haplotype, an extended haplotype that spans the MAPT gene and has previously been
implicated in other neurodegenerative disorders including Parkinson’s disease, progressive supranuclear palsy, and corticobasal
degeneration. In summary common variants at AβPP, PSEN1, and PSEN2 and MAPT are unlikely to make strong contributions
to susceptibility for LOAD. However, the gene-wide effect observed at MAPT indicates a possible contribution to disease risk
which requires further study.

Keywords: Alzheimer’s disease, amyloid-� protein precursor, genetics, human, MAPT protein, PSEN1 protein, PSEN2 protein

INTRODUCTION

The neuropathological hallmarks of late-onset
Alzheimer’s disease (LOAD) are assumed to provide
major clues to pathogenesis. These include extracel-
lular plaques, which are predominantly made up of
insoluble amyloid-� protein, and neurofibrillary tan-
gles (NFTs), intracellular accumulations of paired
helical filaments, which are comprised mainly of
hyperphosphorylated forms of the microtubule asso-
ciated protein, tau [1]. Genes involved in the amyloid
pathway and the tau gene, MAPT, have therefore long
been considered as putative candidates for involvement
in LOAD susceptibility.

Amyloid-� is formed from the cleavage of amyloid-
� protein precursor (AβPP) by �- and �-secretases.
Mutations within AβPP, plus presenilin 1 (PSEN1)
and presenilin 2 (PSEN2), which encode part of the
�-secretase complex, can cause the autosomal domi-
nant, predominantly early-onset forms of Alzheimer’s
disease [2, 3]. To date, 32 pathogenic AβPP mutations
have been identified in patients with early-onset
Alzheimer’s disease (EOAD) (Alzheimer Disease
& Frontotemporal Dementia Mutation Database;
http://www.molgen.ua.ac.be/admutations). These
mutations increase cleavage of AβPP by �-secretase
[4]. In addition, 185 PSEN1 and 13 PSEN2 pathogenic
mutations have been observed in EOAD patients
which increase �-secretase cleavage of AβPP [4].

Genetic variation at the MAPT locus has been con-
vincingly associated with an increased risk of the
sporadic tauopathies progressive supranuclear palsy
(PSP) and corticobasal degeneration (CBD) [5]. The
associations reported include several polymorphisms

that span the MAPT locus and which are in high linkage
disequilibrium (LD). These variants form two extended
haplotypes H1 and H2, which have been shown to cap-
ture the common haplotypic variation across the gene.
H1, the more common haplotype, consists of multi-
ple sub-haplotypes. One of these, H1c has been found
to capture the observed association between H1 and
both PSP and CBD more effectively [6]. H2 is a less
common, single, un-recombining haplotype.

In addition a recent genome-wide association study
(GWAS) identified association between MAPT and
Parkinson’s disease (PD) [7], where three single
nucleotide polymorphisms (SNPs) at the locus sur-
passed genome-wide significance. Simón-Sánchez and
colleagues observed that the risk alleles at each SNP
are in LD with the H1 haplotype, thus the findings
are consistent with those from other neurodegenerative
disorders.

While AβPP, PSEN1, and PSEN2 are established
contributors to rare forms of AD, as is MAPT to other
neurodegenerative disorders including PD, PSP, and
CBD, the question remains whether these genes are
implicated in the common form of AD which occurs
later in life (>65 years). Relatively recent studies
testing these genes for association with LOAD have
produced both positive [8–17] and negative results
[18–24]. This includes analyses of the MAPT H1 and
H1c haplotypes [8, 16, 17, 19, 21, 24]. However, these
studies have been underpowered to detect common risk
alleles of the effect sizes typically seen in common
disorders. We therefore tested variants at the AβPP,
PSEN1, PSEN2, and MAPT loci for association with
LOAD in an extended version of the Genetic and
Environmental Risk in AD Consortium 1 (GERAD1)
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case-control dataset, previously published by Harold
and colleagues [25], consisting of 3,940 AD cases and
13,373 controls.

MATERIALS AND METHODS

SNPs within 20 kb of AβPP, PSEN1, PSEN2, and
MAPT were analyzed for single-marker and gene-
wide association to LOAD within the GERAD1
GWAS dataset (directly genotyped and imputed).
Meta-analysis between GERAD1 and two publically
available datasets was also performed for markers
selected from the GERAD1 single-marker analysis.
The details of all analyses are given below.

GERAD1 samples

The total sample analyzed in this study was com-
prised of 4,957 AD cases and 9,682 controls previously
described in Harold and colleagues [25] plus an addi-
tional 5,529 controls. The sample included 4,113 cases
and 1,602 elderly screened controls recruited by the
Medical Research Council (MRC) Genetic Resource
for AD (Cardiff University; Institute of Psychia-
try, London; Cambridge University; Trinity College
Dublin), the Alzheimer’s Research UK (ARUK) Col-
laboration (University of Nottingham; University of
Manchester; University of Southampton; University
of Bristol; Queen’s University Belfast; the Oxford
Project to Investigate Memory and Ageing (OPTIMA),
Oxford University); Washington University, St Louis,
United States; MRC PRION Unit, University Col-
lege London; London and the South East Region
AD project (LASER-AD), University College Lon-
don; Competence Network of Dementia (CND) and
Department of Psychiatry, University of Bonn, Ger-
many and the National Institute of Mental Health
(NIMH) AD Genetics Initiative. In addition, 844 AD
cases and 1,255 elderly screened controls were ascer-
tained by the Mayo Clinic, Jacksonville, Florida; Mayo
Clinic, Rochester, Minnesota; and the Mayo Brain
Bank. All AD cases met criteria for either prob-
able (NINCDS-ADRDA [26], DSM-IV) or definite
(CERAD [27]) AD.

A total of 6,825 population controls were also
included. These were drawn from large existing
cohorts with available GWAS data, including the
1958 British Birth Cohort (1958BC) http://www.
b58cgene.sgul.ac.uk), the NINDS funded neurogenet-
ics collection at Coriell Cell Repositories (Coriell)
(http://ccr.coriell.org/), the KORA F4 Study [28], the

Heinz Nixdorf Recall Study [29, 30], and amyotrophic
lateral sclerosis controls [31].

Additional controls, not previously analyzed,
included 1,456 elderly screened controls from
the Lothian birth cohort, University of Edinburgh
(http://www.lothianbirthcohort.ed.ac.uk/), plus 4,069
population controls from either the 1958BC (n = 1,596)
or the National Blood Service [32] (n = 2,477). Addi-
tional genotypes were also made available for 1,068
1958BC controls previously included in the Harold and
colleagues publication [25]. All individuals included in
the analysis have provided informed consent to take
part in genetic association studies and we obtained
approval to perform a GWAS including 19,000 par-
ticipants (MREC 04/09/030; Amendment 2 and 4;
approved 27 July 2007).

Genome-wide analysis

The GWAS was performed as described by Harold
and colleagues [25]. 5,715 samples were genotyped
using the Illumina 610-quad chip; genotypes for the
remaining subjects (n = 14,453) were made available
either from population control datasets or through
collaboration and were genotyped on the Illumina
HumanHap 1.2M, 610, 550 or 300 BeadChips. Prior to
association analysis, all samples and genotypes under-
went stringent quality control (QC), which resulted in
the elimination of 58,841 autosomal SNPs and 2,855
subjects. Thus, in Stage 1, we tested 528,747 autosomal
SNPsforassociation inup to17,313subjects (3,940AD
cases and 13,373 controls, of whom 3,534 were elderly
controls who were screened for cognitive decline or
neuropathological signs of AD). The genomic con-
trol inflation factor λ [33] was 1.060 (λ1000 = 1.010),
suggesting little evidence for residual stratification.
SNPs were tested for association with AD using logis-
tic regression, assuming an additive model. Specific
details of the logistic regression analysis and the covari-
ates included are given elsewhere [25]. Genome-wide
significance was defined as p < 5 × 10−8 as suggested
by Pe’er and colleagues [34].

GERAD1 imputation analysis

AD summary statistics were based on 3,940 cases
and 13,373 controls from UK, USA, and Germany
typed with the Illumina Chips 1.2M, 610, 550, and
300. Genotypes at the 201,228 SNPs common to
each of the 4 chips were used as input for imputa-
tion. The imputation was performed using IMPUTE2
software [35] with two phased reference panels, the

http://www.b58cgene.sgul.ac.uk
http://www.b58cgene.sgul.ac.uk
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1000 genomes (http://www.1000genomes.org) August
2009 release and Hapmap3, r. II. NCBI build 36 posi-
tions were used for all markers in this study. QC
filters applied included a minor allele frequency (MAF)
≥0.01 and an INFO score (representing imputation
quality)≥0.8. After QC 4,685,506 markers remained.
The AD case/control data were then analyzed using
logistic regression including covariates accounting for
country of data collection and the five principal com-
ponents obtained with EIGENSTRAT [36] software
based on individual genotypes for the GERAD1 study
participants. The genomic control inflation factor λ for
the imputed dataset was 1.11.

Gene-wide analysis

All SNPs located within A�PP, PSEN1, PSEN2,
and MAPT that were either directly genotyped within
the GERAD1 sample or imputed were identified.
SNPs were assigned to a gene if they were located
within ± 20 kb of any transcript corresponding to that
gene. P-values were calculated under an additive
disease model and adjusted for genomic control (geno-
typed λ = 1.06, imputed λ = 1.11).

Gene-wide analysis was performed based on the
Simes [37] method for conducting multiple tests of sig-
nificance. The Simes method is less conservative than
the Bonferroni method when the tests are not indepen-
dent, and is thus better suited for analyzing multiple
SNPs from the same gene (where the individual asso-
ciation tests are likely to be correlated due to linkage
disequilibrium). If the p-values for the individual tests
are ordered such that p(1) ≤ p(2) ≤ . . . ≤ p(n) then the
null hypothesis of no association in the gene is rejected
at significance level � if p(j) ≤ j�/n for any j = l,...,n.
The corrected p-value for the joint significance test of
all SNPs in a gene using this method (denoted “Simes
p-value”) is given by the minimum of p(j) × (n/j).

Meta-analysis with additional datasets

Meta-analysis was performed on GERAD1 and two
publically available GWAS datasets from the Trans-
lational Genomics (TGEN) Research Institute and the
Alzheimer’s Disease Neuroimaging Initiative (ADNI).

The TGEN sample, previously reported by Reiman
and colleagues [23], is comprised of 861 cases and
550 controls. Imputation of this dataset was performed
using MACH software [38] with the August 2010 1000
genomes reference panel. SNPs were tested for asso-
ciation using logistic regression assuming an additive
model. Sample population (USA or Netherlands) was
included as a covariate.

The ADNI (http://www.loni.ucla.edu/ADNI) [39]
GWAS data was subjected to QC-filtering prior to asso-
ciation analysis. This included retaining individuals
with missing genotype rates <0.01, with mean auto-
somal heterozygosity between 0.32 and 0.34, and with
mean X-chromosome heterozygosity either <0.02 for
males, or between 0.25 and 0.40 for females. Following
QC, 151 AD cases and 177 controls were analyzed in
this study. Imputation was performed using IMPUTE2
software [35] and the August 2010 1000 genome data
release. SNPs were tested for association with AD
using logistic regression assuming an additive model.

Meta-analysis was performed by inverse variance
weights (IVW) meta-analysis using summary data (i.e.,
odds ratios (OR) and standard errors). The standard
error statistic included in the inverse variance weights
meta-analysis accounts for variation in sample size
between studies. The Cochran’s Q-test and the I2 het-
erogeneity index were used to assess heterogeneity
between studies. Significant evidence of heterogene-
ity was determined by a Cochran’s Q-statistic p < 0.1
or I2 > 50. In these instances a random effects meta-
analysis was performed; alternatively, meta-analysis
with a fixed effect model was used.

RESULTS

Analysis of AβPP, PSEN1, PSEN2, and MAPT

A summary of the results is given in Table 1.
The most significant p-values are shown for both
genotyped and imputed SNPs. Single-marker analysis
did not identify any variants within these four genes
that reached genome-wide significance (p < 5 × 10−8)
in either analysis. At the MAPT locus, rs11656151
shows the greatest evidence for association with
AD (imputed p = 8.8 × 10−5). rs11656151 is located
within intron 8 of MAPT isoform I-467 (NM 016835).
The most significant SNP at the PSEN1 locus is a
1000 genomes marker at chr14 : 72745579 (NCBI36,
imputed p = 1.9 × 10−4) which is located within intron
8 of PSEN1 isoform 1 (NM 000021) and lies within a
4555 bp of a deletion which has been identified in two
AD families. This deletion spans exon 9 of PSEN1
which results in an in-frame skipping of exon 9 and
an amino acid change at the splice junction of exon 8
and 10 [40, 41]. At the AβPP locus, rs381743 shows
the greatest evidence for association with AD (imputed
p = 0.002). It is located 15 kb 5’ to the AβPP gene. The
most significant SNP within PSEN2 shows a borderline
significant association with AD (rs12405469 imputed
p = 0.041). This SNP is located 7 kb 3’ to PSEN2.
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Table 1
Analysis of AβPP, PSEN1, PSEN2, and MAPT in the GERAD1 dataset

GWAS results Imputed Results

Single-marker analysis Gene-wide analysis Single-marker analysis Gene-wide analysis

Gene Gene position ± 20 KB (NCBI36) SNP ID OR p value Simes p value SNP ID Info OR P value Simes p value

A�PP chr21 : 26,154,732-26,485,003 rs2830088 0.94 0.010 0.362 rs381743 0.87 0.92 0.002 0.420
PSEN1 chr14 : 72,652,932-72,776,862 rs362350 0.90 0.020 0.240 chr14-72745579 0.80 1.37 1.9 × 10−4 0.077
PSEN2 chr1 : 225,104,896-225,170,427 rs2073489 0.96 0.136 0.611 rs12405469 0.81 0.94 0.041 0.784
MAPT chr17 : 41,307,544-41,481,546 rs8079215 1.10 0.001 0.034 rs11656151 0.84 1.13 8.8 × 10−5 0.009

The most significant results are shown for SNPs directly genotyped and those imputed in the dataset. Odds Ratios (OR) are based on the minor allele. Gene-wide analysis of AβPP, PSEN1, PSEN2,
and MAPT in the GERAD1 dataset using the Simes method is also given.

Table 2
Single-marker and meta-analysis results for the most significant SNPs within AβPP, PSEN1, PSEN2, and MAPT, plus the H1 haplotype tag SNP rs9468, within three independent LOAD GWAS

samples (GERAD1, TGEN, and ADNI)

GERAD1 TGEN ADNI Meta-analysis

Gene SNP ID Info OR p value RSQR OR p value Info OR p value OR p value Q-statistic I2

A�PP rs381743 0.87 0.91 0.002 0.96 0.97 0.789 N/A N/A N/A 0.92 0.003 0.586 0
PSEN1 chr14-72745579 0.80 1.36 1.9 × 10−4 0.71 0.75 0.378 N/A N/A N/A 1.10 0.743 0.071 69
PSEN2 rs12405469 0.81 0.94 0.041 0.99 1.06 0.573 N/A N/A N/A 0.95 0.072 0.264 20
MAPT rs11656151 0.84 1.13 8.8 × 10−5 0.89 1.08 0.538 0.95 1.21 0.283 1.13 4.7 × 10−5 0.855 0
MAPT rs9468 0.87 0.89 7.8 × 10−4 0.95 0.96 0.725 0.98 0.83 0.289 0.89 5.2 × 10−4 0.786 0

Inverse variance weights (IVW) meta p-values were calculated from summary statistics. Odds ratios (OR) refer to the minor allele. Meta p-values given are based on a fixed effect model unless
Q statistic p < 0.1 or I2 > 50. In these instances a random effects model was used. N/A = Not available.



A. Gerrish et al. / Variation at AβPP, PSEN1, PSEN2, and MAPT in LOAD 383

We attempted to impute these variants in two publi-
cally available GWAS datasets [23, 39]. These results
as well as the meta-analysis of all three datasets are
given in Table 2. Meta-analysis of these variants did not
produce any genome-wide significant variants. How-
ever, we observed a slight increase in significance
of the association between the MAPT polymorphism
rs11656151 (p = 4.7 × 10−5) and AD. While this SNP
was not significant in the TGEN and ADNI datasets,
both showed the same direction of effect as GERAD1
dataset for this variant.

In addition to single-marker analysis, we performed
gene-wide analysis using all SNPs located within
20 kb of AβPP, PSEN1, PSEN2, and MAPT (Table 1).
Gene-wide analysis may offer a number of possible
advantages over single locus tests [42]. For example,
if there is more than one independent association sig-
nal within a gene or set of markers, combining these
into a single statistic may offer enhanced power over
single SNP analysis [43]. We detected no significant
association between AβPP, PSEN1, or PSEN2 and AD
using this approach. However, MAPT shows signifi-
cant gene-wide association (Simes p = 0.009) which
survives multiple testing correction for the four genes
analyzed.

Further analysis of MAPT association

Previous studies of MAPT have reported association
between the H1 haplotype and AD [16, 17] as well
as other neurodegenerative disorders [6]. The marker
rs9468 defines H1/H2 status [19]. In our imputed
dataset rs9468 shows some evidence of association to
AD (p = 7.8 × 10−4), with the risk allele (T) a proxy
for the H1 haplotype. We imputed rs9486 in both the
TGEN and ADNI datasets (Table 2). Meta-analysis of
all three samples slightly increased the significance of
this variant (p = 5.2 × 10−4). However, the H1 sub-
haplotypes including H1c could not be analyzed as
only 5 out of the 6 markers, which define these hap-
lotypes could be reliably imputed in the GERAD1
dataset.

DISCUSSION

AβPP, PSEN1, PSEN2, and MAPT are all impli-
cated by AD pathology and been shown to have genetic
effects on neurodegenerative disorders. In order to
determine whether these genes cause susceptibility
to LOAD, we analyzed AβPP, PSEN1, PSEN2, and
MAPT in an imputed GWAS dataset of 3,940 cases

and 13,373 controls. Association analysis of variants
at each locus revealed no genome-wide significant
SNPs. This observation is supported by other recent
AD GWAS’, which do not observe genome-wide sig-
nificance at these loci [44–46]. Taken together this
data suggests that common variation at these loci
does not provide a strong contribution to LOAD sus-
ceptibility.

Conversely, we did observe a significant associ-
ation between MAPT and AD using a gene-wide
approach (p = 0.009), an analysis that has not been
performed within the recent GWAS’. A significant
gene-wide result can be suggestive of multiple inde-
pendent association signals within a gene. However, if
genuine AD susceptibility variants exist at the MAPT
loci, they are likely to be of weak effect. For exam-
ple, rs11656151, the most significant single-marker at
MAPT in our dataset, has an OR of 1.13. Meta-analysis
of three GWAS datasets provided evidence of con-
sistency between samples. However, the TGEN and
ADNI datasets are relatively small and replication in
much larger samples is needed.

The marker rs9468, tags the H1 haplotype which
has been found to be overrepresented in both PSP
and CBD cases [6]. Furthermore, the top hit in a
recent PD GWAS of 3,361 cases and 4,573 controls
(rs393152, p = 1.95 × 10−16) tags the H1 haplotype
[7]. Marker rs9468 showed some evidence for associa-
tion to LOAD in the GERAD1 dataset (p = 7.8 × 10−4).
In addition, we observed the same direction of effect
in the TGEN and ADNI datasets. However, as with
rs11656151, this marker needs to be explored in larger
datasets. Furthermore, as a result of insufficient data,
we could not determine whether refining the H1 haplo-
type into a subhaplotype such as H1c, which has been
found to be associated with neurodegenerative disor-
ders CBD and PSP, would increase the significance of
association observed.

While our results suggest that common variation
at AβPP, PSEN1, PSEN2, and MAPT does not pro-
vide a strong contribution to AD risk, it is possible
that these loci contain as yet undetected rare variants
of larger effect. Genome-wide association studies are
underpowered to detect these variants and sequenc-
ing of several thousand cases and controls would be
required to detect rare variants at these loci.

In conclusion, it is unlikely that common variation
at AβPP, PSEN1, PSEN2, and MAPT provide strong
contributions to susceptibility for LOAD. However, the
gene-wide effect observed at MAPT indicates a pos-
sible contribution to disease risk. Replication of this
result is necessary although it is likely that large sample
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sizes will be required to achieve the power necessary
to show a true effect.
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