84 research outputs found

    Half-sandwich rhodium(III) transfer hydrogenation catalysts : reduction of NAD+ and pyruvate, and antiproliferative activity

    Get PDF
    Organometallic complexes have the potential to behave as catalytic drugs. We investigate here Rh(III) complexes of general formula [(Cpx)Rh(N,N′)(Cl)], where N,N′ is ethylenediamine (en), 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen) or N-(2-aminoethyl)-4-(trifluoromethyl)benzenesulfonamide (TfEn), and Cpx is pentamethylcyclopentadienyl (Cp*), 1-phenyl-2,3,4,5-tetramethylcyclopentadienyl (CpxPh) or 1-biphenyl-2,3,4,5-tetramethyl cyclopentadienyl (CpxPhPh). These complexes can reduce NAD+ to NADH using formate as a hydride source under biologically-relevant conditions. The catalytic activity decreased in the order of N,N-chelated ligand bpy > phen > en with Cp* as the η5-donor. The en complexes (1–3) became more active with extension to the CpX ring, whereas the activity of the phen (7–9) and bpy (4–6) compounds decreased. [Cp*Rh(bpy)Cl]+ (4) showed the highest catalytic activity, with a TOF of 37.4 ± 2 h− 1. Fast hydrolysis of the chlorido complexes 1–10 was observed by 1H NMR (< 10 min at 310 K). The pKa* values for the aqua adducts were determined to be ca. 8–10. Complexes 1–9 also catalysed the reduction of pyruvate to lactate using formate as the hydride donor. The efficiency of the transfer hydrogenation reactions was highly dependent on the nature of the chelating ligand and the Cpx ring. Competition reactions between NAD+ and pyruvate for reduction by formate catalysed by 4 showed a preference for reduction of NAD+. The antiproliferative activity of complex 3 towards A2780 human ovarian cancer cells increased by up to 50% when administered in combination with non-toxic doses of formate, suggesting that transfer hydrogenation can induce reductive stress in cancer cells

    Anti-colorectal cancer activity of an organometallic osmium arene azopyridine complex

    Get PDF
    This first in vivo antitumour activity for an organometallic osmium arene complex, [Os(eta(6)-p-cym)(4-(2-pyridylazo)-N,N-dimethylaniline)I]PF(6), is reported. The complex delays the growth of HCT116 human colon cancer xenografts in mice, with negligible toxicity. Its activity appears to involve redox mechanisms and its potency towards A2780 ovarian and A549 lung cancer cells is increased significantly in combination with L-buthionine-sulfoximine

    Photoactivatable organometallic pyridyl ruthenium(II) arene complexes

    Get PDF
    The synthesis and characterization of a family of piano-stool RuII arene complexes of the type [(η6-arene)Ru(N,N′)(L)][PF6]2, where arene is p-cymene (p-cym), hexamethylbenzene (hmb), or indane (ind), N,N′ is 2,2′-bipyrimidine (bpm), 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione (phendio), or 4,7-diphenyl-1,10-phenanthroline (bathophen), and L is pyridine (Py), 4-methylpyridine (4-MePy), 4-methoxypyridine (4-MeOPy), 4,4′-bipyridine (4,4′-bpy), 4-phenylpyridine (4-PhPy), 4-benzylpyridine (4-BzPy), 1,2,4-triazole (trz), 3-acetylpyridine (3-AcPy), nicotinamide (NA), or methyl nicotinate (MN), are reported, including the X-ray crystal structures of [(η6-p-cym)Ru(bpm)(4-MePy)]2+ (2), [(η6-p-cym)Ru(bpm)(4-BzPy)]2+ (6), [(η6-p-cym)Ru(bpm)(trz)]2+ (7), [(η6-p-cym)Ru(phen)(Py)]2+ (10), and [(η6-ind)Ru(bpy)(Py)]2+ (13). These complexes can selectively photodissociate the monodentate ligand (L) when excited with UVA or white light, allowing strict control of the formation of the reactive aqua species [(η6-arene)Ru(N,N′)(OH2)]2+ that otherwise would not form in the dark. The photoproducts were characterized by UV–vis absorption and 1H NMR spectroscopy. DFT and TD-DFT calculations were employed to characterize the excited states and to obtain information on the photochemistry of the complexes. All the RuII pyridine complexes follow a relatively similar photochemical L-ligand dissociation mechanism, likely to occur from a series of 3MC triplet states with dissociative character. The photochemical process proved to be much more efficient when UVA-range irradiation was used. More strikingly, light activation was used to phototrigger binding of these potential anticancer agents with discriminating preference toward 9-ethylguanine (9-EtG) over 9-ethyladenine (9-EtA). Calf thymus (CT)-DNA binding studies showed that the irradiated complexes bind to CT-DNA, whereas the nonirradiated forms bind negligibly. Studies of CT-DNA interactions in cell-free media suggest combined weak monofunctional coordinative and intercalative binding modes. The RuII arene complexes [(η6-p-cym)Ru(bpm)(Py)]2+ (1), [(η6-p-cym)Ru(bpm)(4-MeOPy)]2+ (3), [(η6-p-cym)Ru(4,4′-bpy)]2+ (4), [(η6-hmb)Ru(bpm)(Py)]2+ (8), [(η6-ind)Ru(bpm)(Py)]2+ (9), [(η6-p-cym)Ru(phen)(Py)]2+ (10), [(η6-p-cym)Ru(bathophen)(Py)]2+ (12), [(η6-p-cym)Ru(bpm)(NA)]2+ (15), and [(η6-p-cym)Ru(bpm)(MN)]2+ (16) were cytotoxic toward A2780 human ovarian cancer cell line in the absence of photoirradiation (IC50 values in the range of 9.0–60 μM)

    Bipyrimidine ruthenium(II) arene complexes : structure, reactivity and cytotoxicity

    Get PDF
    The synthesis and characterization of complexes [(η6-arene)Ru(N,N′)X][PF6], where arene is para-cymene (p-cym), biphenyl (bip), ethyl benzoate (etb), hexamethylbenzene (hmb), indane (ind) or 1,2,3,4-tetrahydronaphthalene (thn), N,N′ is 2,2′-bipyrimidine (bpm) and X is Cl, Br or I, are reported, including the X-ray crystal structures of [(η6-p-cym)Ru(bpm)I][PF6], [(η6-bip)Ru(bpm)Cl][PF6], [(η6-bip)Ru(bpm)I][PF6] and [(η6-etb)Ru(bpm)Cl][PF6]. Complexes in which N,N′ is 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione or 4,7-diphenyl-1,10-phenanthroline (bathophen) were studied for comparison. The RuII arene complexes undergo ligand-exchange reactions in aqueous solution at 310 K; their half-lives for hydrolysis range from 14 to 715 min. Density functional theory calculations on [(η6-p-cym)Ru(bpm)Cl][PF6], [(η6-p-cym)Ru(bpm)Br][PF6], [(η6-p-cym)Ru(bpm)I][PF6], [(η6-bip)Ru(bpm)Cl][PF6], [(η6-bip)Ru(bpm)Br][PF6] and [(η6-bip)Ru(bpm)I][PF6] suggest that aquation occurs via an associative pathway and that the reaction is thermodynamically favourable when the leaving ligand is I > Br ≈ Cl. pK a* values for the aqua adducts of the complexes range from 6.9 to 7.32. A binding preference for 9-ethylguanine (9-EtG) compared with 9-ethyladenine (9-EtA) was observed for [(η6-p-cym)Ru(bpm)Cl][PF6], [(η6-hmb)Ru(bpm)Cl]+, [(η6-ind)Ru(bpm)Cl]+, [(η6-thn)Ru(bpm)Cl]+, [(η6-p-cym)Ru(phen)Cl]+ and [(η6-p-cym)Ru(bathophen)Cl]+ in aqueous solution at 310 K. The X-ray crystal structure of the guanine complex [(η6-p-cym)Ru(bpm)(9-EtG-N7)][PF6]2 shows multiple hydrogen bonding. Density functional theory calculations show that the 9-EtG adducts of all complexes are thermodynamically preferred compared with those of 9-EtA. However, the bmp complexes are inactive towards A2780 human ovarian cancer cells. Calf thymus DNA interactions for [(η6-p-cym)Ru(bpm)Cl][PF6] and [(η6-p-cym)Ru(phen)Cl][PF6] consist of weak coordinative, intercalative and monofunctional coordination. Binding to biomolecules such as glutathione may play a role in deactivating the bpm complexes

    Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells

    Get PDF
    Catalytic anticancer metallodrugs active at low doses could minimise side-effects, introduce novel mechanisms of action which combat resistance, and widen the spectrum of anticancer drug activity. We have used new highly-stable chiral half-sandwich organometallic Os(II) arene sulfonyl diamine complexes, [Os(arene)(TsDPEN)] to achieve highly enantioselective reduction of pyruvate, a key intermediate in metabolic pathways, both in aqueous model systems and in human cancer cells, using non-toxic concentrations of sodium formate as a hydride source. Importantly the catalytic mechanism generates selectivity towards ovarian cancer cells versus non-cancerous fibroblasts (both ovarian and lung), which are commonly used as models of healthy proliferating cells. The formate precursor N-formylmethionine was explored as an alternative to formate in PC3 prostate cancer cells, which are known to over-express a deformylase enzyme. Transfer hydrogenation catalysts generating reductive stress in cancer cells offer a ground-breaking new approach to cancer therapy

    Half-sandwich arene ruthenium(II) and osmium(II) thiosemicarbazone complexes : solution behavior and antiproliferative activity

    Get PDF
    We report the synthesis, characterization and antiproliferative activity of organo-osmium(II) and organo-ruthenium(II) half-sandwich complexes [(η6-p-cym)Os(L)Cl]Cl (1 and 2) and [(η6-p-cym)Ru(L)Cl]Cl (3 and 4), where L = N-(2-hydroxy)-3-metoxybenzylidenethiosemicarbazide (L1) or N-(2,3-dihydroxybenzylidene)-3-phenylthiosemicarbazide (L2), respectively. X-ray crystallography showed that all four complexes possess half-sandwich pseudo-octahedral “three- leg piano-stool” structures, with a neutral N,S-chelating thiosemicarbazone ligand and a terminal chloride occupying three coordinative positions. In methanol, E/Z isomerization of the coordinated thiosemicarbazone ligand was observed, while in an aprotic solvent like acetone, partial dissociation of the ligand occurs, reaching complete displacement in a more coordinating solvent like DMSO. In general, the complexes exhibited good activity towards A2780 ovarian, A2780Cis cisplatin-resistant ovarian, A549 lung, HCT116 colon, and PC3 prostate cancer cells. In particular ruthenium complex 3 does not present cross-resistance with the clinical drug cisplatin in the A2780 human ovarian cancer cell line. The complexes were more active than the free thiosemicarbazone ligands, especially in A549 and HCT116 cells with po- tency improvements of up to 20-fold between the organic ligand L1 and the ruthenium complex 1

    Design of photoactivatable metallodrugs : selective and rapid light-induced ligand dissociation from half-sandwich [Ru([9]aneS3)(N–N′)(py)]2+ complexes

    Get PDF
    The synthesis of the inert Ru(II) half-sandwich coordination compounds, [Ru([9]aneS3)(bpy)(py)][PF6]2 (1, [9]aneS3 = 1,4,7-trithiacyclononane, bpy = 2,2′-bipyridine, py = pyridine), [Ru([9]aneS3)(en)(py)][PF6]2 (2, en = 1,2-diaminoethane), and [Ru([9]aneN3)(en)(dmso-S)][PF6]2 (3, [9]aneN3 = 1,4,7-triazacyclononane), is reported along with the X-ray crystal structure of 1. We investigated whether these complexes have photochemical properties which might make them suitable for use as pro-drugs in photochemotherapy. Complexes 1 and 2 underwent rapid (minutes) aquation with dissociation of the pyridine ligand in aqueous solution when irradiated with blue light (λ = 420 or 467 nm). The photodecomposition of 3 was much slower. All complexes readily formed adducts with 9-ethylguanine (9-EtG) when this model nucleobase was present in the photolysis solution. Similarly, complex 1 formed adducts with the tripeptide glutathione (GSH), but only when photoactivated. HPLC and MS studies of 1 showed that irradiation promoted rapid formation of 1:1 (major) and 1:2 (minor) adducts of the oligonucleotide d(ATACATGCTACATA) with the fragment {Ru([9]aneS3)(bpy)}2+. Density functional theory (DFT) calculations and time-dependent DFT reproduced the major features of the absorption spectra and suggested that the lowest-lying triplet state with 3MLCT character, which is readily accessible via intersystem crossing, might be responsible for the observed dissociative behavior of the excited states. These complexes are promising for further study as potential photochemotherapeutic agents

    Photoactivatable cell-selective dinuclear trans diazido platinum(IV) anticancer prodrugs

    Get PDF
    Novel all-trans dinuclear PtIV complexes bridged by a dicarboxylate linker, highly stable in the dark, generate azidyl and hydroxyl radicals upon irradiation with blue light. They are photocytotoxic to human cancer cells, whereas cisplatin was inactive under these conditions and more photoactive toward cisplatin-resistant ovarian cancer cells compared to wild-type cells. Remarkably, the dinuclear complexes were relatively nontoxic toward normal human cells. Cell cycle and DNA binding experiments suggested that DNA is a target

    NMR studies of group 8 metallodrugs : 187Os-enriched organo-osmium half-sandwich anticancer complex

    Get PDF
    Synthesis of this 187Os-enriched organo-osmium azopyridine anticancer complex, has allowed determination of 187Os NMR J-couplings to ligand 1H and 13C, and the 187Os chemical shift. The complex was also characterised by X-ray crystallography and MS

    Combatting AMR : photoactivatable ruthenium(ii)-isoniazid complex exhibits rapid selective antimycobacterial activity

    Get PDF
    The novel photoactive ruthenium(II) complex cis-[Ru(bpy)2(INH)2][PF6]2 (1·2PF6, INH = isoniazid) was designed to incorporate the anti-tuberculosis drug, isoniazid, that could be released from the Ru(II) cage by photoactivation with visible light. In aqueous solution, 1 rapidly released two equivalents of isoniazid and formed the photoproduct cis-[Ru(bpy)2(H2O)2]2+ upon irradiation with 465 nm blue light. We screened for activity against bacteria containing the three major classes of cell envelope: Gram-positive Bacillus subtilis, Gram-negative Escherichia coli, and Mycobacterium smegmatis in vitro using blue and multi-colored LED multi-well arrays. Complex 1 is inactive in the dark, but when photoactivated is 5.5× more potent towards M. smegmatis compared to the clinical drug isoniazid alone. Complementary pump-probe spectroscopy measurements along with density functional theory calculations reveal that the mono-aqua product is formed in <500 ps, likely facilitated by a 3MC state. Importantly, complex 1 is highly selective in killing mycobacteria versus normal human cells, towards which it is relatively non-toxic. This work suggests that photoactivatable prodrugs such as 1 are potentially powerful new agents in combatting the global problem of antibiotic resistance
    • …
    corecore