

Original citation:

Gatti, Anna, Habtemariam, Abraha, Romero-Canelón, Isolda, Song, Ji-Inn, Heer, Bindy, Clarkson, Guy J., Rogolino, Dominga, Sadler, P. J. and Carcelli, Mauro (2018) Half-sandwich arene ruthenium(II) and osmium(II) thiosemicarbazone complexes : solution behavior and antiproliferative activity. Organometallics, 37 (6). pp. 891-899. doi:10.1021/acs.organomet.7b00875

Permanent WRAP URL:

http://wrap.warwick.ac.uk/100537

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Organometallics, copyright © American Chemical Society after peer review and technical editing by the publisher.

To access the final edited and published work see http://dx.doi.org/10.1021/acs.organomet.7b00875

A note on versions:

The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications

Half-sandwich arene ruthenium(II) and osmium(II) thiosemicarbazone complexes: solution behavior and antiproliferative activity

Anna Gatti,^{#,§} Abraha Habtemariam,[#] Isolda Romero-Canelón,^{#,¥} Ji-Inn Song, [#] Bindy Heer, [#]Guy J. Clarkson,[#] Dominga Rogolino,[§] Peter J. Sadler^{*,#} and Mauro Carcelli^{*,§}

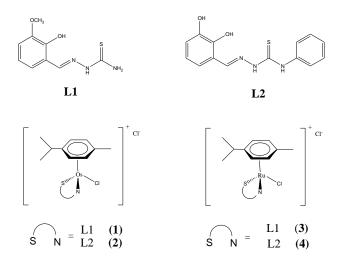
[§]Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy [#]Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom

¥ School of Pharmacy, University of Birmingham, Birmingham B15 2TT, United Kingdom

ABSTRACT: We report the synthesis, characterization and antiproliferative activity of organo-osmium(II) and organoruthenium(II) half-sandwich complexes [(η^6 -*p*-cym)Os(L)Cl]Cl (1 and 2) and [(η^6 -*p*-cym)Ru(L)Cl]Cl (3 and 4), where L = N-(2-hydroxy)-3-metoxybenzylidenethiosemicarbazide (L1) or N-(2,3-dihydroxybenzylidene)-3-phenylthiosemicarbazide (L2), respectively. X-ray crystallography showed that all four complexes possess half-sandwich pseudo-octahedral "threeleg piano-stool" structures, with a neutral N,S-chelating thiosemicarbazone ligand and a terminal chloride occupying three coordinative positions. In methanol, E/Z isomerization of the coordinated thiosemicarbazone ligand was observed, while in an aprotic solvent like acetone, partial dissociation of the ligand occurs, reaching complete displacement in a more coordinating solvent like DMSO. In general, the complexes exhibited good activity towards A2780 ovarian, A2780Cis cisplatin-resistant ovarian, A549 lung, HCT116 colon, and PC3 prostate cancer cells. In particular ruthenium complex 3 does not present cross-resistance with the clinical drug cisplatin in the A2780 human ovarian cancer cell line. The complexes were more active than the free thiosemicarbazone ligands, especially in A549 and HCT116 cells with potency improvements of up to 20-fold between the organic ligand L1 and the ruthenium complex 1.

INTRODUCTION

The discovery of highly efficient anticancer drugs with increased selectivity and less toxic side effects is an area of intense research in bioinorganic chemistry.1 Thiosemicarbazones (TSCs) and their metal complexes display a wide spectrum of biological activities,2,3,4,5 in particular they possess anticancer, antibacterial and antiviral properties.6,7,8 A variety of cellular mechanisms of action appears to be involved in the activity of this class of ligands,9 including the inhibition of cellular iron uptake by transferrin,^{10,11,12} the mobilization of iron from cells,^{6,7,8} the inhibition of ribonucleotide reductase activity,13,14,15 the upregulation of the metastasis suppressor protein, N-myc downstream regulated gene I,^{16,17} and the formation of redox active metal complexes that produce reactive oxygen species.^{11,18,19,20} Moreover, various studies²¹ have demonstrated that the biological properties of TSC ligands can be modified and improved upon binding to transition metal ions.^{6,22} Metal coordination presents an opportunity to improve synergistically the efficacy of a biologically active organic scaffold²³ such as lipophilicity, which influences cell permeability.²⁴ Diversity arises from not only the choice of the metal itself and its oxidation state, but also from the type and number of coordinated ligands, as well as the coordination geometry of the complex.²³ Metal complexes of TSCs are playing a promising role in anticancer research, as is evident form the number of recent publications.^{8,25,26,27} Platinum drugs are still widely used to treat cancer,^{5,28} but their therapeutic use can be


limited by intrinsic or acquired resistance and by the occurrence of numerous deleterious side effects.^{29,30} It is imperative therefore, to develop new and more effective drugs. Ruthenium, a second row transition metal, continues to attract much attention,^{31,32} as its complexes have long been known to be well suited for biological applications.^{33,34} Organometallic Ru(II) complexes with halfsandwich structure have demonstrated anti-proliferative potential,³⁵ and there are numerous possibilities to modulate their biological and pharmacological properties by the appropriate choice of the ligands.^{11,36} In particular, the presence of a chelating ligand offers structural stability and the opportunity to tune the electronic and steric features of the complex.³⁷ Additional features to be considered include water solubility and air stability.^{37,38} The biological activity of osmium compounds has been much less explored, perhaps because of the reputation of osmium (as osmium tetroxide) as being highly toxic.³⁹ Nevertheless, several half sandwich piano-stool osmium(II) complexes have exhibited promising *in vitro* activity and no cisplatin cross-resistance.^{40,41,42} Investigations of osmium complexes as alternatives to ruthenium-based anticancer agents have resulted in structurally diverse libraries of osmium complexes with different oxidation states and nuclearity.^{43,44,45,46}

Organometallic chemistry offers a potentially rich field for biological and medicinal application;⁴⁷ however, lack of understanding of the aqueous chemistry of the organometallic complexes has emerged as a major obstacle for further developments. This is particularly true for osmium(II) arene complexes.⁴⁸ Third row transition metals are more inert than those of the first and second row. For example, aquation of Pt(II) chlorido complexes often occurs up to 104 times more slowly compared to the lighter congener Pd(II), and similarly organo-Os(II) complexes react typically 100 times more slowly than Ru(II).49,50,51 However, reports on ruthenium arene complexes have shown that their aqueous reactivity is highly dependent on the nature of the coordinated ligands, as well as the arene, rather than on the metal and its oxidation state alone.^{52,53} The aim of the present study is to investigate the reactivity in solution and the antiproliferative activity toward cells of two Os(II) complexes cancer $[(\eta^{6}-p$ cym)Os(L)Cl]Cl (1 and 2) and two analogous Ru(II) complexes $[(\eta^6-p-cym)Ru(L)Cl]Cl$ (3 and 4), where L = N-(2hydroxy)-3-metoxybenzylidenethiosemicarbazide (L1) or N-(2,3-dihydroxybenzylidene)-3-phenylthiosemicarbazide (L2), respectively (Figure 1). This type of ligands, which could in principle be tridentate, can confer solution stability on their metal complexes; moreover they have shown interesting cytotoxic properties⁵⁴ and could offer synergic antitumor activity. Different substituents were considered for ligands L1 and L2 on both the phenyl ring and at the N(3) nitrogen, since this can modulate lipophilicity and/or complex-substrate interactions. The solution behaviour of complexes 1-4 was studied both in a protic solvents such as methanol or water/DMSO mixture and in coordinating aprotic solvents like acetone, DMSO and DMF. The antiproliferative activity of 1-4 was evaluated for A2780 human ovarian carcinoma and its cisplatin resistant variant A2780Cis, A549 lung, HCT116 colon and PC3 prostate tumor cell lines.

RESULTS AND DISCUSSION

Synthesis and characterization of the complexes. The ligands N-(2-hydroxy)-3-metoxybenzylidenethiosemicarbazide (L1) and N-(2,3-dihydroxybenzylidene)-3-phenylthiosemicarbazide (L2) were synthesized according to previously reported procedures.^{54,55}

The reactions between $[(\eta^6-p-cym)MCl_2]_2$ (M= Os, Ru) and the corresponding thiosemicarbazone ligands were carried out in a mixture of dry CH₃OH and CH₂Cl₂ at

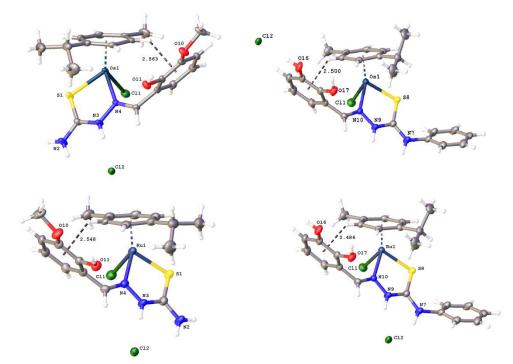


Figure 1. Schematic representation of the ligands L1 and L2 and the corresponding osmium(II) and ruthenium(II) complexes 1-4.

ambient temperature and led to the isolation of pseudo octahedral complexes **1-4** of general formula $[(\eta^6-p-cym)M(L)Cl]Cl$ in good yields. The identity of the complexes was verified by 'H-NMR spectroscopy, and ESI-MS spectrometry, and their structures were confirmed by single crystal X-ray crystallography. In all cases, the metal coordinates to a chloride ion, a η^6-p -cymene ring and a *NS*-bidentate thiosemicarbazone chelating ligand. One chloride is present as the counterion (**Figure 1**).

X-ray crystallographic studies. Crystals suitable for Xray diffraction analysis were obtained by slow evaporation of saturated solutions in methanol for compounds 1 and 3 and in acetone for compounds 2 and 4. The crystal structures and atomic numbering schemes for $[(\eta^6-p$ cym)Os(L1)Cl]Cl (1), $[(\eta^6-p-cym)Os(L2)Cl]Cl\cdot(CH_3)_2CO$ $(2 \cdot (CH_3)_2 CO)$, $[(\eta^6 - p - cym)Ru(L_1)Cl]Cl$ (3) and $[(\eta^6 - p - cym)Ru(L_1)Cl]Cl]Cl$ (cym)Ru(L2)Cl]Cl·(CH₃)₂CO (4·(CH₃)₂CO) are shown in Figure 2. Selected bond lengths and angles are listed in Table 1, other crystallographic data are reported in Table S1. Complexes 1 and 3 crystallize in the orthorhombic system with the chiral space group P212121, while complexes 2 and 4 crystallize in triclinic system with centrosymmetric space group P-1. Both 2 and 4 crystallize with an acetone solvent molecule. The complexes adopt the expected halfsandwich pseudo-octahedral "three leg piano-stool" geometry with η^6 -*p*-cymene as the seat and the neutral N,Schelating TSC ligand and a terminal chloride as the three legs. The positive charge of the complex is balanced by a chloride counterion. It is notable that in all the complexes, the ligand is present as the *E* isomer.

In 1 and 3, the uncoordinated chloride anion forms a NH…Cl hydrogen bond respectively of 3.034(4) Å and 175.1° for 1 and 3.031(3) and 176.7° for 3. In 2 and 4 a similar H-bond occurs between the uncoordinated chloride and the 3-OH group of the aromatic ring with a bond distance OH…Cl of 3.0651(16) and 169.0° for 2 and 3.0605(9) and 168.7° for 4. The thiosemicarbazone ligands bind to the metal center through the imine nitrogen and the thione sulfur forming a five member chelate ring with an angle of 82° for N-Ru-S, indicating a distortion from a regular

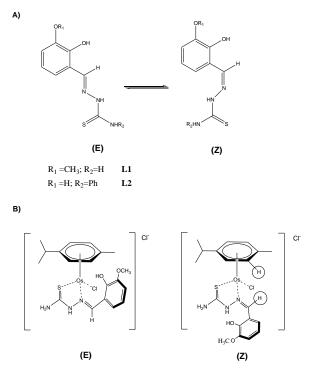
Figure 2. X-Ray crystal structures of complexes **1-4** with thermal ellipsoids drawn at 50% probability. Hydrogens are drawn as fixed-size spheres of 0.11 Å of radius and solvent molecules have been omitted for clarity. The edge-to-face stacking between one of the hydrogens of the *p*-cymene ring and an aromatic ring of the thiosemicarbazone ligands is indicated.

	0	Bond distance (Å)		Bond angle (°)
1				
	Osı-Clı	2.4113(12)	S1-Os1-Cl1	86.52(4)
	Os1-S1	2.3551(13)	N4-Os1-Cl1	81.63(10)
	Os1-N4	2.118(4)	N4-Os1-S1	81.63(11)
	S1-C2	1.695(5)		
	H14-CE1	2.563		
2 •(CH ₃)₂CO				
	Osı-Clı	2.4030(5)	S8-Os1-Cl1	87.81(2)
	Os1-S8	2.3527(5)	N4-Os1-Cl1	83.44(5)
	Os1-N10	2.1227(17)	N10-Os1-S8	81.79(5)
	S8-C8	1.693(2)		
	H21-CE1	2.500		
3				
	Ruı-Clı	2.4046(11)	Sı-Ruı-Clı	86.90(4)
	Ru1-S1	2.3501(10)	N4-Rui-Cli	83.06(9)
	Ru1-N4	2.125(3)	N4-Rui-Si	81.95(10)
	S1-C2	1.695(4)		
	H14-CE1	2.548		
4 •(CH ₃)₂CO				
	Ruı-Clı	2.3993(3)	S8- Rui-Cli	88.338(11)
	Ru1-S8	2.3508(3)	N10- Ru1-Cl1	84.77(3)
	Ru1-N10	2.1256(9)	N10- Ru1-S8	81.94(3)
	S8-C8	1.6923(12)		
	H21-CE1	2.486		
			a	

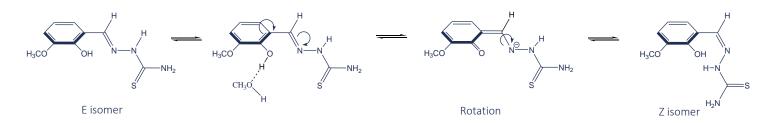
Table 1. Selected bond lengths (Å) and angles (°) for complexes 1-4.

octahedron, in analogy with similar Ru-arene thiosemicarbazone complexes.⁵⁶ The length of the S-C bond (~1.69 Å) is in accord with a double bond nature; in the free ligands it is ~1.69-1.70 Å.^{57,58,59}

It is worth noting that in some osmium(II) and ruthenium(II) arene complexes, the potentially NNO tridentate hydrazone ligands behave as NN bidentate ligands. It has been highlighted that the ligands are not flexible enough to occupy a facial arrangement in the complex and are therefore bidentate.⁶⁰ An analogous situation could occur with L1 and L2, that can span the three facial coordination sites of the metal only with difficulty. Interestingly, these hydrazone ligands were found in both *E* and *Z* configuration upon complexation with Ru(II) and Os(II). The dihedral angles between the aromatic ring plane and the thiosemicarbazones are


Figure 3. Aromatic region of the time-dependent ¹H-NMR spectrum of **1** in MeOD-d₄ at T = 298 K followed over 30 days. *E* and *Z* isomers are labelled as *a* and *b* set, respectively. The percentage of the *Z* isomer (*b* set) increases with time.

around 70° in complexes 1 and 3 and about 78° in 2 and 4. Usually, this type of ligand adopts a flat conformation:^{58,59,61} in our structures the lack of coplanarity is related to metal coordination. In the crystal structures of 1-4, the same T-shaped edge-to-face stacking π interactions, between one of the hydrogens of the *p*-cymene ring and the π electron density of the aromatic ring of the thiosemicarbazone ligands, are observed (distances from 2.50 to 2.86 Å, **Figure 2**).

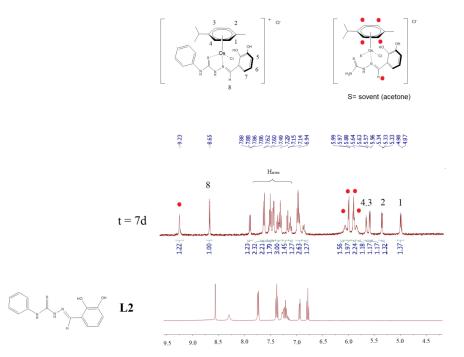

Solution studies. 'H-NMR studies were used to investigate the stability of the four complexes in various solvents. ¹H NMR spectra of 1-4 were firstly recorded in MeOD-d₄, due to their low solubility in chlorinated solvents such as chloroform or dichloromethane. For all the metal complexes, the spectra displayed just one set of signals, corresponding to the *E* isomer of the bidentate ligand coordinated to the metal center, the isomer in the crystallized complexes. The aromatic protons of the thiosemicarbazone ligands displayed peaks between 6.5 and 8.2 ppm and the iminic protons between 8.7 and 8.9 ppm, as expected for the ligand in the *E* form.^{55,62} The complexes contain chiral metal centers and in the ¹H-NMR spectra recorded at 298 K a doublet is present for each *p*-cymene proton in the range 4.90-5.90 ppm; the isopropyl methyl groups appear as two doublets at 1.1 and 1.2 ppm. The resonance of one proton of the *p*-cymene ring displays a marked high-field shift in comparison with the other pcymene protons, in particular up to 4.90 ppm for osmium compounds 1 and 2 and 4.87 for ruthenium 3 and 4 (Fig**ure 3**). This is likely due to edge-to face π -interaction between the C-H hydrogen and the aromatic ring of the TSC ligand in the *E* form, as observed previously in analogous systems.^{21,63}

The time dependence of the ¹H-NMR spectra of **1-4** (5 mM) in MeOD-d₄ was monitored over 30 days at 298 K, and is illustrated for complex **1** in **Figure 3**.

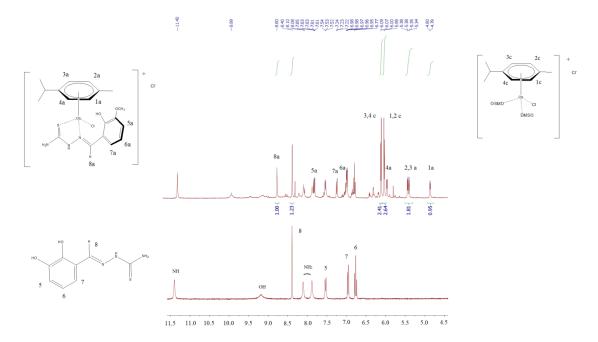
As shown in Figure 3, a second set of peaks started to appear after 24 h (set *b*) and increased in intensity until a 1:1 ratio for the two species was reached over a period of 21 days. Variable temperature ¹H-NMR spectra were recorded from 298 to 323 K over a period of two hours. The 1:1 ratio of the a:b peak areas for the two species recorded at t=30 days did not change over this temperature range (data not shown). NOESY experiments carried out for 1 at t=30 days, gave evidence that in the b set of peaks there is an interaction between the iminic hydrogen of the ligand and one of the aromatic protons of the *p*-cymene (Figure S1); this interaction is absent in the *a* set. A possible explanation for the presence, in solution, of two species (corresponding to set *a* and set *b*) is the establishment of an E/Z equilibrium for the coordinated ligand L1 (Figure 4). The presence of both the *E* and the *Z* isomers of the ligand coordinated to the metal center would explain the interaction of the iminic proton with the p-cymene moiety, observed for set *b* in the NOESY experiment. This interaction is possible only for a Z conformation of the ligand and not with the *E* conformation. TSCs are known to undergo E/Z interconversion not only as free ligands, but also upon coordination (for a mechanistic insight see ref. 64 and references therein).

Figure 4. A) E/Z interconversion for **L1** and **L2**. **B)** Chemical structures of the *E* and *Z* isomers of the ligand **L1** in the complex **1**; the interaction between the iminic proton and one proton of the *p*-cymene is depicted by circles.

Scheme 1. Proposed mechanism for the E/Z interconversion process of the coordinated ligand L1 for metal complexes 1 and 3 in methanol


The increase in the percentage of Z isomer suggests that the presence of a protic solvent could lead to the formation of a negative charge on the iminic nitrogen and to the rotation around the single bond, resulting in the isomerization and the formation of the Z isomer, as proposed in Scheme 1. This mechanism is supported by the ¹H-NMR spectrum of the crystals of the complexes in methanol. In the X-ray crystal structures of 1 and 3, obtained from a methanol solution, the ligand is in the E conformation, but the 'H-NMR spectra of the same crystals recorded in MeOD-d₄ showed the presence of both isomers of the ligands after 24 h, suggesting that the solvent plays a crucial role in the isomerization process. Recently, examples of pentamethylcyclopentadienyl iridium(III) complexes with TSCs ligands that crystallize with the coordinated ligand either with E or Z conformation have been reported, confirming the possibility of having both isomers in organometallic complexes.65

Analysis of the data provides evidence that the interconversion is slightly faster for the ruthenium compound: at 298 K the Z isomer takes two weeks to reach the equilibrium with the *E* isomer (1:1 *ratio*), whereas three weeks are required for the osmium complex. The situation is slightly different for the complexes 2 and 4. For these complexes a second set of signals arises over time (1:1 *ratio* at t= 7 days and 298 K, **Figure S2**). However, the 'H-NMR spectra of these complexes show broad signals in the aromatic region for the Z isomer (**Figure S2**). For complex 4, for example, at t= 7 days only very broad overlapping signals can be seen (**Figure S3**). The presence of two hydroxyl groups on the aromatic ring of the coordinated ligand, perhaps gives rise to exchange processes or paramagnetic species which broaden signals in the 'H-NMR spectra.


Due to the long-time scale of the NMR experiments and the catecholic nature of the ligand L2, complexes 2 and 4 can be subjected to oxidation. UV-visible spectroscopy was performed in order to verify whether the catechol moiety of 2 is involved in oxidation processes in methanol solution. The development of a stable and strong absorption band of a methanol solution of 2 around 337 nm, related to π - π * transition of the catechol aromatic ring, was followed over three days in air (**Figure S4**). No changes in the UV-Vis spectra were detected, indicating that the catechol moiety is not involved in redox processes. 'H-NMR spectra of complexes 1-4 were also recorded in an aprotic solvent, acetone. In this case, two different sets of signals were observed immediately after dissolution in acetone-d₆ at 298 K for all the complexes (**Figure 5**). Comparison with the 'H-NMR obtained in MeOD at t=0 indicates that one set of signals is related to the parent organometallic compound, as shown in **Figure 5** for compound 2. The presence of free ligand was excluded by comparison with the 'H-NMR spectrum of L2 recorded in acetone-d₆. It is notable that the 'H-NMR spectra change with time at 298 K: as shown in **Figure 5**, both a shift and a modification of the pattern of the signals is observed over 2 days. After this time the two sets of signals did not change their *ratio* (ca. 1: 1.2). Probably, the second set of signals is due to a species containing a coordinated solvent molecule (**Figure 5**).

Due to the limited aqueous solubility of the metal complexes, antiproliferative cell assays were performed using stock solutions prepared by dissolution of the compound in DMSO followed by dilution with water (final concentration of DMSO 0.5%). The hydrolysis processes are of interest as indicators of the stability of the pro-drug under such biological testing conditions, and therefore, the solution behavior of 1-4 was investigated also in DMSOd₆. In the ¹H-NMR spectra of 1 and 3 in DMSO-d₆ recorded at 298 K, three different sets of signals were observed. A comparison with the ¹H-NMR spectrum of L1 obtained in the same solvent confirmed the presence of free ligand in a 1:1 ratio vs the metal complex (Figure 6). The two doublets observed at 6.08 and 6.00 ppm can be assigned to a complex of the type $[Os(\eta^6-p-cym)(DMSO)_2Cl]Cl$, in a 1:1 ratio with the parent organometallic complex 1 and the free ligand L1. As recently pointed out in the literature, such a pattern of signals frequently arises after displacement of the organic ligand in $[Ru(\eta^6-p-cym)(L)Cl_2]$ complexes.⁶⁶ Ligand dissociation was apparent visually: addition of DMSO to the orange powder of 1 leads to an orange solution that became green as dissociation proceeded.

Complexes 2 and 4 in DMSO-d₆, gave a complex pattern of ¹H-NMR signals. Comparison with the spectrum of 2 in MeOD at t=0 indicates that the major set of signals is related to the parent compound 2. However, other sets of signals of lower intensity were observed (**Figure S5**). Both

Figure 5. Aromatic region of the ¹H-NMR spectrum of **2** recorded in acetone-d₆ at 298 K and followed over 7 days. Red circles indicate proton resonances related to the species with a coordinated solvent molecule.

Figure 6. Comparison of the aromatic region of the 'H-NMR of complex 1 (upper spectrum) and of the corresponding free ligand L1 (lower spectrum) in DMSO- d_6 at t=0 and 298 K.

sets of signals for the free ligand L2 and the $[Os(\eta^6-p-cym)(DMSO)_2Cl]Cl$ species, each accounted for about 10% of the major set. In case of 2 and 4 in DMSO, however, a further set of signals, corresponding to about 25% of the

major set arises in the ¹H-NMR spectrum. A possible explanation for this set of signals is the presence of a monosolvated species of the type $[Os(\eta^6-p-cym)(DMSO)(L)Cl]Cl$ (**Figure S5**).

To determine whether the degradation process correlates with the concentration of DMSO, the analysis was performed using a solution of D₂O-(10%)DMSO, monitored for 24 hours to mimic the biological test conditions. The ¹H-NMR spectra of the solutions of 1-4 displayed in all cases broad signals, with complicated splitting patterns, indicating the presence of several dissociation equilibria in solution. This behaviour prevented the use of DMSO in biological tests, and therefore, the possibility of preparing stock solutions of the compounds in DMF was investigated. In this case, all the complexes 1-4 presented a unique set of signals, stable over 7 days at 298 K (**Figure S6**).

Anticancer activity. The anti-proliferative activity of the ligands L1 and L2 and of the related osmium and ruthenium complexes 1 - 4 towards A549 lung, A2780 ovarian, HCT116 colon and PC3 prostate human cancer cells lines was investigated. All experiments included untreated negative controls and cells treated with the clinical drug cisplatin (CDDP) as positive control. The anticancer activity of the organometallic complexes was investigated by performing dose-response studies in the various cell lines (Figure S7). A stock solution of each compound was prepared in cell culture medium with DMF to aid solubilisation. IC₅₀ values (concentrations which caused 50% of cell growth inhibition) were determined as duplicates of triplicates in two independent sets of experiments and are reported in Table 2. Importantly, all experiments designed to determine the antiproliferative activity of the complexes included three set of controls (negative, vehicle, and positive). The cell survival in the negative controls and the vehicle controls were compared, and in all cases the differences were not statistically significant to 99%. This indicates that the DMF in the sample solutions of complexes 1-4 is not toxic and does not interfere with the measurements. Hence, the effects on cell survival observed arise only from the activity of the ligands or the metal-based complexes.

Both thiosemicarbazones L1 and L2 are highly potent towards ovarian cell lines A2780 and A2780Cis. L1 in particular exhibits IC₅₀ values of 0.85 µM and 0.12 µM, respectively. Ligand L2 shows submicromolar activity in A2780 cells (0.27 µM) and low micromolar potency in A2780Cis $(1.23 \mu M)$. Although the metal complexes are less active than their corresponding ligands, they show IC₅₀ values of the same order of magnitude as that of CDDP in the parental cell line and improved resistant factors. Resistance factors, calculated as the ratio between the antiproliferative activity in the parental cell line and its resistant derivative, give an indication of whether the cellular mechanisms of resistance to CDDP are involved in the mechanism of action of the novel metal complexes. It has been proposed that the underlying resistance associated with A2780Cis involves a two-fold more efficient efflux of the platinum drug and a consequent reduction in cellular accumulation as compared to the parental A2780, as well as an increase in DNA-repair mechanisms.⁶⁷ The corresponding resistance factor for CDDP is 11.25. Complexes 3 and 4 are particularly promising for overcoming CDDP-

resistance as they have the lowest factors of 1.33 and 3.4, respectively, highlighting the importance of the substituents in the chelating ligands and in particular the incorporation of a phenyl ring at the N(3) of the thiosemicarbazone, when compared to -NH2. For the A549 lung and HCT116 colon cancer cells, there is an improvement in the activity of metal complexes compared to their corresponding ligands, with thiosemicarbazones L1 and L2 exhibiting an order of magnitude higher IC₅₀ concentrations than the clinical drug CDDP. It is important to highlight the 17-fold improvement in potency between L1 and its osmium complex 1 increasing from 42 μ M to 2.4 μ M in A549 cells, as well as, the 12-fold increase in potency between L2 (33 μ M) and osmium complex 2 (2.7 μ M) and 20-fold compared to ruthenium complex 4 (1.64 μ M) in the colon HCT116 cell line. The prostate cancer cell line PC₃, shows mixed results with increments in potency for the complexes 2 and 4 derived from L2, but reduction in anticancer activity for complexes 1 and 3 derived from L1. The former are more active than CDDP in this cell line. The observed trends in the anticancer activity, across all cell lines and all compounds, point towards complexes with ligand L₂ being more potent than those which bear the ligand L1 and within this, the ruthenium complex 4 has a more potent activity compared to the osmium analogue. This highlights that the anticancer activity of the complexes is not only the result of the metal center per se, but also of the nature of the substituents on the thiosemicarbazone ligands.

CONCLUSIONS

Two new osmium(II) and two ruthenium(II) halfsandwich complexes $[(\eta^6-p-cym)M(L)Cl]Cl$ containing a thiosemicarbazone ligand (L) were synthesized and characterized by 'H-NMR, ESI-MS spectrometry and single crystal X-ray crystallography. Complexes 1-4 are structurally very similar and characterized by a distorted octahedral geometry. In the crystal structures, the *E* configuration of the thiosemicarbazone ligand was evident.

In a protic solvent, such as methanol, an interconversion takes place and peaks for both E and Z isomers of the ligand appear in the 'H-NMR spectrum: the conformational change in the ligand is probably promoted by the interaction of the solvent with the acidic proton of the aromatic ring.

When the complexes were dissolved in the non-protic, coordinating acetone, or in DMSO, solvation reactions prevailed. On the contrary, in DMF solution, the complexes remained stable. Hence DMF (5%) and not DMSO was used to aid solubility for cancer cell screening. Promising results were obtained, particularly towards HCT116 colon cancer cells, in which the metal complexes are up to 20-fold more potent than the corresponding free ligand L2. Ruthenium complex 3 shows promising anticancer activity and the possibility to overcome CDDP resistance as demonstrated by the data for A2780 ovarian cancer cells and its derived CDDP-resistant cell line A2780Cis. In fact

all complexes showed lower resistance factors than the clinical drug cisplatin.

Future work will be aimed at optimizing the pharmacological profiles of these complexes, and especially to increase stability under biological testing conditions.

Table 2. IC_{50} values (μ M) for L1 and L2 and related metal complexes 1-4 towards human ovarian (A2780), cisplatinresistant ovarian (A2780Cis), lung (A549), colon (HCT116) and prostate (PC3) cancer cell lines. Clinical drug cisplatin (CDDP) is used as positive control.

			Cell lines IC ₅₀ /µM			Resistance Factors
Compound	A2780	A2780Cis	A549	HCT116	PC ₃	A2780Cis/A2780
Lı	0.85±0.03	0.12±0.02	42±2	30.6±0.5	6.1±0.1	0.14
L2	0.27±0.02	1.23±0.08	23±1	33±5	4.6±0.2	4.55
1	1.60±0.02	6.6±0.9	2.4±0.2	24±2	21±1	4.12
2	0.75±0.08	7.2±0.1	17±1	2.7±0.2	1.60±0.08	9.60
3	4.2±0.3	5.6±0.8	-	10.5±0.3	19±1	1.33
4	0.36±0.03	1.25±0.06	-	1.64±0.08	1.38±0.04	3.47
CDDP	1.2 ± 0.2	13.5 ± 0.3	3.1 ± 0.2	5.2 ± 0.1	9.8 ± 0.4	11.25

EXPERIMENTAL SECTION

Materials. All commercial reagents were used as received. 2-Hydroxy-3-metoxybenzaldehyde, 2,3-dihydroxybenzaldehyde, thiosemicarbazide and 4-phenylthiosemicarbazide were purchased from Sigma-Aldrich; $OsCl_3 \cdot nH_2O$ and $RuCl_3 \cdot nH_2O$ from Alfa Aesar. All reactions were performed under an inert atmosphere of nitrogen using standard Schlenk line techniques and all glassware was oven-dried (120°C) overnight. Dry solvents were purchased from Sigma-Aldrich and stored under nitrogen. [(η^6 *p*-cym)OsCl_2]₂ and [(η^6 -*p*-cym)RuCl_2]₂ were synthesized according to literature procedures.^{49,68}

Cell Culture. Cell lines used in this work included A2780 human ovarian carcinoma and its cisplatin resistant variant A2780Cis, A549 human caucasian lung carcinoma, HCT116 human colon carcinoma, and PC3 human prostate carcinoma. They were all obtained from the European Collection of Cell Cultures (ECACC), used between passages 5 and 18 and were grown in Roswell Park Memorial Institute medium (RPMI-1640) supplemented with 10% (v/v) of fetal calf serum, 1% (v/v) of 2 mM glutamine and 1% (v/v) penicillin/streptomycin. They were grown as adherent monolayers at 310 K in a 5% CO₂ humidified atmosphere and passaged at ca. 70-80% confluence.

In vitro Growth Inhibition Assay. Briefly, 5000 cells were seeded per well in 96-well plates. The cells were pre-incubated in drug-free media at 310 K for 48 h before adding different concentrations of the compounds to be tested. A stock solution of the metal complex was firstly prepared in 5% DMF (v/v) and a mixture 0.9% saline and medium (1:1) (v/v) following serial dilutions in RPMI-1640. The drug exposure period was 24 h. After this, supernatants were removed by suction and each well was washed with PBS. A further 72 h was allowed for the cells to recover in drug-free medium at 310 K. The SRB assay was used to determine cell viability. Absorbance measurements of the solubilised dye allowed the determination of viable treated cells compared to untreated controls. IC50 values (concentrations which caused 50% of cell growth inhibition), were determined as duplicates of triplicates in two independent sets of experiments and their standard deviations were calculated. All experiments included three sets of controls: a) negative controls, in which cells were kept untreated, b) vehicle controls, in which cells were exposed to medium with vehicle only (in this case DMF, at the highest concentration used for the complexes), and c) positive controls, in which cells were exposed to different concentrations of the anticancer drug cisplatin.

Syntheses. General procedure for the synthesis of thiosemicarbazone ligands (L1–L2).

The synthesis of the ligands L1 and L2 was performed using the following adapted literature procedure.^{54,55} The appropriate aldehyde (1 mol equiv) was dissolved in a hot toluene solution (20 ml) containing few drops of glacial acetic acid. An equimolar amount of the corresponding thiosemicarbazide (1 mol equiv) was added to the solution and the reaction mixture was heated under reflux for 8 h. The solution was cooled to ambient temperature and the TSC ligands were obtained as precipitate. After filtration the solid was washed several times with toluene and ether and dried under vacuum.

N-(2-hydroxy)-3-metoxybenzylidenethiosemicarbazide (L1). White powder, yield: 87%. ¹H-NMR (DMSO-d₆): δ 11.39 (s, 1H, NH), 9.17 (s, 1H, OH), 8.40 (s, 1H, CH=N), 8.10-7.88 (2s, 1H+1H, NH₂), 7.52 (d, 1H, J=7.5 Hz, CH_{Ar}), 6.95 (d, 1H, J=7.5 Hz, CH_{Ar}), 6.75 (t, 1H, J=7.5 Hz, CH_{Ar}), 3.81 (s, 3H, OCH₃). ESI-MS (C₉H₁₁N₃SO₂, MeOH): m/z= 225 [M+H]⁺.

 $\begin{array}{ll} N-(2,3-dihydroxybenzylidene)-3-phenylthiosemicarbazide & (L2).\\ White powder, yield: 81%. 'H-NMR (DMSO-d_6): \delta 11.76 (s, 1H, NH), 10.01-9.54 (2s, 1H+1H, OH), 9.01 (s, 1H, NH), 8.49 (s, 1H, CH=N), 7.56 (d, 2H, J=7.5 Hz, CH_{Ar}), 7.49 (d, 2H, J=8 Hz, CH_{Ar}), 7.34 (t, 2H, J=7.5 Hz, CH_{Ar}), 7.17 (t, 1H, J=7.5 Hz, CH_{Ar}), 6.81 (d, 1H, J=8 Hz, CH_{Ar}), 6.64 (t, J=8 Hz, CH_{Ar}). ESI-MS (C_{14}H_{13}N_3SO_2, MeOH): m/z= 287 [M+H]^+.\\ \end{array}$

General procedure for the metal complexes synthesis (1-4). The TSC ligand (2 mol equiv) was dissolved in dry methanol (20 ml) and the solution was acidified with the addition of one drop of HCl 37%. $[(\eta^6-p\text{-cym})\text{MCl}_2]_2$ (1 mol equiv) was dissolved in 10 mL of dry dichloromethane and the solution was added to the previous one. The reaction mixture was maintained under stirring at ambient temperature under nitrogen for 24 h. The volume was then reduced to half on the rotary evaporator, and diethyl ether was added until the precipitation of a solid occurred. The product was then collected by filtered and dried under vacuum.

 $[Os(\eta^{c}-p-cym)Cl(L1)]Cl$ (1). Orange powder, yield: 98%. Anal. Calcd for C19H25Cl2N3O2OSS: C, 36,77; H, 4,06; N, 6,77. Found: C, 36,51; H, 4,56; N, 6,70. 'H-NMR (MeOD-d₄): δ 8.76 (s, 1H, CH=N), 7.86 (d, 1H, J=8 Hz, CH_Ar), 7.25 (d, 1H, J=8 Hz, CH_Ar), 7.01 (t, 1H, J=8 Hz, CH_Ar), 5.87 (d, 1H, J=5.5 Hz, CH_{p-cym}), 5.44 (d, 1H, J=5.5 Hz, CH_{p-cym}), 5.31 (d, 1H, J=5.5 Hz, CH_{p-cym}), 4.90 (d, 1H, J=5.5 Hz, CH_{p-cym}), 3.99 (s, 3H, OCH₃), 2.54 (m, 1H, J=7 Hz, CH_iprop), 2.16 (s, 3H, CH₃), 1.20-1.11 (2d, 3H+3H, J=7 Hz, CH_{3i-prop}). ESI-MS (positive ions, MeOH): m/z= 585 [M-Cl]⁺.

Crystals suitable for X-ray analysis were obtained by vapour diffusion of ether in saturated methanol solution of the compound. $[Os(\eta^{6}-p-cym)Cl(L_2)]Cl$ (2). Orange powder, yield: 72%. Anal. Calcd for C24H27Cl2N3O2OSSH₂O: C, 41,14; H, 4,17; N, 6,00. Found: C, 40,81; H, 4,16; N, 6,23. 'H-NMR (MeOD-d₄): δ 8.87 (s, 1H, CH=N), 7.75 (d, 1H, J=7 Hz, CH_{Ar}), 7.48 (t, 2H, J=7 Hz, CH_{Ar}), 7.43 (d, 2H, J=7 Hz, CH_{Ar}), 7.35 (t, 1H, J=7 Hz, CH_{Ar}), 7.08 (dd, 1H, J=8 Hz, CH_{Ar}), 6.88 (t, 1H, J=8 Hz, CH_{Ar}), 5.86 (d, 1H, J=5.5 Hz, CH_{p-cym}), 5.49 (d, 1H, J=5.5 Hz, CH_{p-cym}), 5.31 (d, 1H, J=5.5 Hz, CH_{p-cym}), 1.21-1.13 (2d, 3H+3H, J=7 Hz, CH_{3i-prop}). ESI-MS (positive ions, CH₃OH): m/z= 648 [M-Cl]⁺.

Crystals suitable for X-ray analysis were obtained by slow evaporation of a saturated acetone solution.

[$Ru(\eta^6$ -p-cym) $Cl(L_1)$]Cl (3). Red powder, yield: 78%. Anal. Calcd for C19H25Cl2N3O2RUSCH₃OH: C, 42,63; H, 5,19; N, 7,46. Found: C, 41,92; H, 5,21; N, 7,34. 'H-NMR (MeOD-d₄): δ 8.79 (s, 1H, CH=N), 8.06 (d, 1H, J=8 Hz, CH_Ar), 7.28 (d, 1H, J=8 Hz, CH_Ar), 7.07 (t, 1H, J=8 Hz, CH_Ar), 5.71 (d, 1H, J=6 Hz, CH_p-cym), 5.17 (d, 1H, J=6 Hz, CH_p-cym), 5.04 (d, 1H, J=6 Hz, CH_p-cym), 4.00 (s, 3H, OCH₃), 2.64 (m, 1H, J=7 Hz, CH_i-prop). ESI-MS (positive ions, CH₃OH): m/z= 496 [M-Cl]⁺.

Crystals suitable for X-ray analysis were obtained by vapour diffusion of ether in a saturated methanol solution of the compound.

[$Ru(\eta^6$ -p-cym) $Cl(L_2)$]Cl (4). Red powder, yield: 87%. Anal. Calcd for C24H27Cl2N3O2RuSCH₃COCH₃: C, 49,77; H, 5,10; N, 6,45. Found: C, 49,54; H, 5,23; N, 7,01. 'H-NMR (MeOD-d₄): δ 8.90 (s, 1H, CH=N), 7.95 (dd, 1H, J=8 Hz, J'=1 Hz, CH_{Ar}), 7.48 (t, 2H, J=7.5 Hz, CH_{Ar}), 7.41 (d, 2H, J=7.5 Hz, CH_{Ar}), 7.37 (d, 1H, J=7 Hz, CH_{Ar}), 7.09 (td, 1H, J=8 Hz, J'=1 Hz, CH_{Ar}), 6.94 (t, 1H, J=7.5 Hz, CH_{Ar}), 5.86 (d, 1H, J=5.5 Hz, CH_{p-cym}), 5.49 (d, 1H, J=5.5 Hz, CH_{p-cym}), 5.31 (d, 1H, J=5.5 Hz, CH_{p-cym}), 4.93 (d, 1H, J=5.5 Hz, CH_{p-cym}), 2.55 (m, 1H, J=7 Hz, CH_{i-prop}), 1.21-1.13 (2d, 3H+3H, J=7 Hz, CH_{3i-prop}). ESI-MS (positive ions, CH₃OH): m/z= 558 [M-Cl]⁺.

Crystals suitable for X-ray analysis were obtained by slow evaporation of a saturated acetone solution of the compound.

X-Ray Crystallography. Diffraction data were obtained on an Xcalibur Gemini diffractometer four-circle system with a Ruby CCD area detector using Mo K α radiation. Absorption corrections were applied using ABSPACK⁶⁹. The crystals were mounted on a glass fiber with Fromblin oil and kept at 150(2) K during data collection. Using Olex2⁷⁰, the structure was solved with the ShelXT⁷¹ structure solution program using Direct Methods and refined with the ShelXL refinement package using least squares minimisation.

NMR spectroscopy. 'H-NMR spectra were obtained in 5 mm NMR precision tubes at 298 K on either Bruker DPX-300 or DPX-400 NMR spectrometers. 'H-NMR chemical shift were internally referenced to $(CHD_2)(CD_3)SO$ (2.50 ppm) for DMSO-d₆, CD_3OD (3.31 ppm) for methanol-d₄, D₂O (4.79 ppm) for water-d₂, $(CD_3)_2CO$ (2,05 ppm) for acetone-d₆. 'H-NMR spectra at variable temperature were obtained in 5 mm NMR precision tube on Bruker AV-III 400 NMR spectrometer. NOESY spectra were obtained in 5 mm NMR precision tubes at 298 K on Bruker DPX- 500 NMR spectrometer. ¹H-NMR peaks were internally referenced to CHD₂OD (3.31 ppm) for methanol- d_4 or 1,4-dioxane (3.66 ppm). All data processing was carried out using MestReNova 9.0.1.

Mass Spectrometry. Electrospray ionization mass spectra (ESI-MS) were obtained by preparing the sample in methanol using a Bruker Esquire 2000 ion trap spectrometer. Samples were prepared in methanol. The mass spectra were recorded with a scan range of m/z 50-500 for positive ions for L_1 - L_2 and m/z 400-1000 for positive ions for the complexes 1-4.

UV-vis spectroscopy. UV-vis absorption spectra were recorded on a Cary 300 spectrometer using quartz cuvettes of 1 cm pathlength (600 μ L). The sample temperature was adjusted to 298 K by PTP1 Peltier temperature controller. Samples were prepared in methanol. Spectra were recorded from 200 to 600 nm. Data were processed with Microsoft Excel 14.3.6 Mac version.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website: Table S1 and Figures S1-S7.

Crystallographic data (excluding structure factors) have also been deposited with the Cambridge Crystallographic Data Centre as supplementary publication: CCDC 1584383, CCDC 1584384, CCDC 1584385, CCDC 1584386. Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (e-mail deposit@ccdc.cam.ac.uk).

AUTHOR INFORMATION

Corresponding Authors

*Mauro Carcelli, e-mail: mauro.carcelli@unipr.it; Phone (+33) 0521 905427 *Peter J. Sadler, e-mail: P.J.Sadler@warwick.ac.uk ; Phone: (+44) 024 7652 3818

NOTES

The authors declare no competing financial interests

ACKNOWLEDGMENT

We thank The Wellcome Trust (107691/Z/15/Z), EPSRC (EP/F034210/1) and the University of Warwick Development Trust for their support for this work. "Centro Interdipartimentale Misure Giuseppe Casnati" of the University of Parma is thanked for facilities.

REFERENCES

1 Alagesan, M.; Sathyadevi, P.; Krishnamoorthy, P.; Bhuvanesh, N.; Dharmaraj, N.; Dharmaraj, N.; Zeng, Z.; Seeram, N.; Peng, W.; Ji, L.; Xu; Pfeffer, M; Loeffler, J.; Gaiddon, C. Dalton Trans. 2014, 43, 15829-15840.

- 2 Yildirim, H.; Guler E.; Yavuz, M.; Ozturk, N.; Yaman, P.
- K.; Subasi; E.; Sahin; E.; Timur, S. Mater. Sci. Eng. C 2014, 44, 1-8.

3 Kumari, P.; Castineiras, A.; Butcher, R.J. Polyhedron 2009, 253, 977-1055.

4 Rodríguez-Argüelles, M. C.; Mosquera-Vázquez, S.; Sanmartín-Matalobos, J. Polyhedron 2010, 29, 864-870.

- 5 Adams, M.; de Kock, C.; Smith, P. J.; Land, K. M.; Liu, N.; Hopper, M.; Hsiao, A.; Burgoyne, A. R.; Stringer, T.; Meyer, M.; Wiesner, L.; Chibale K.; Smith, G.S. Dalton Trans. 2015, 44, 2456-2468.
- 6 Beckford, F. A.; Leblanc, G.; Thessing, J.; Shaloski, M. Jr.;
- Frost, B. J.; Li, L.; Seeram, N.P. Inorg. Chem. Commun. 2009, 12, 1094-1098.

7 Su, W.; Zhou, Q.; Huang, Y.; Huang, Q.; Huo, L.; Xiao, Q.; Huang, S.; Huang, C.; Chen, R.; Qian, Q.; Liu, L.; Li, P. Appl. Organomet. Chem. 2013, 27, 307-312.

8 Chellan, P.; Land, K. M.; Shokar, A.; Au, A.; An, S. H.; Clavel, C. M.; Dyson, P. J.; de Kock, C.; Smith, P.J.; Chibale, K.; Smith, G.S.

Organomet. 2012, 31, 5791-5799. 9 Serda, M.; Kalinowski, D.S.; Rasko, N.; Potůčková, E.; Mrozek-

Wilczkiewicz, A.; Musiol, R.; Małecki, J. G.; Sajewicz, M.; Ratuszna, A.; Muchowicz, A.; Gołąb, J.; Šimůnek, T.; Richardson, D. R.; Polanski, J. PLOS One 2014, 9, e110291.

10 Lukmantara, A. Y.; Kalinowski, D. S.; Kumar, N.; Rich-

ardson, D. R. Bioorg. Med. Chem. Lett. 2013, 23, 967-974. 11 Thota, S.; Vallala, S.; Yerra, R.; Barreiro, E. J. Chin.Chem.

Lett. 2015, 26, 721-726.

12 Stefani, C.; Jansson, P. J.; Gutierrez, E.; Bernhardt, P. V.; Richardson, D. R.; Kalinowski, D. S. J. Med. Chem. 2013, 56, 357-370.

13 Agrawal, K.C.; Booth, B. A.; Moore, E. C.; Sartorelli, A.C. J. Med. Chem. 1972, 15, 1154-1158.

14 Shao, J.; Zhou, B.; Di Bilio, A.J.; Zhu, L.; Wang, T.; Qi, C.;

Shih, J.; Yen, Y. Mol. Cancer Ther., 2006, 5, 586-592.

15 Zhu, L.; Zhou, B.; Chen, X.; Jiang, H.; Shao, J.; Yen, Y. Biochem. Pharmacol. 2009, 78, 1178-1185.

16 Kovacevic, Z.; Chikhani, S.; Lovejoy, D.B.; Richardson, D.R. Mol.Pharmacol. 2011, 80, 598-609.

17 Moussa, R. S.; Kovacevic, Z.; Richardson, D. R. Carcinogenesis 2011, 32, 732-740.

- 18 Bernhardt, P.V.; Sharpe, P. C.; Islam, M.; Lovejoy, D. B.; Kali-
- nowski, D. S.; Richardson, D. R. J. Med. Chem. 2009, 52, 407-415.

19 Richardson, D. R.; Sharpe, P. C.; Lovejoy, D. B.; Senaratne, D.; Kalinowski, D. S.; Islam, M.; Bernhardt, P. V. J. Med. Chem. 2006, 49, 6510-6521.

20 Lovejoy, D. B.; Jansson, P. J.; Brunk, U. T.; Wong, J.; Ponka, P.; Richardson D. R. Cancer Res. 2011, 71, 5871-5881.

21 Su, W.; Qian, Q.; Li, P.; Lei, X.; Xiao, Q.; Huang, S.; Huang, C.; Cui J. J. Inorg. Chem. 2013, 52, 12440-12449.

22 Zeglis, B. M.; Divilov, V.; Lewis, J. S. J. Med. Chem. 2011, 54, 2391-2398.

23 Help, M.; Barry, N. P. E.; Sadler, P. J. Nanotech. 2013, 7, 5654-5659.

24 Beraldo, H.; Gambino, D. Mini-Reviews in Medicinal Chemis-

try 2004, 4, 31-39.

25 Liu, Y.-H.; Li, A.; Shao, J.; Xie, C.-Z.; Song, X.-Q.; Bao, W.-G.; Xu, J.-Y. Dalton Trans. 2016, 45, 8036-8049.

26 Kowol, C. R.; Trondl, R.; Heffeter, P.; Arion, V. B.; Jakupec, M. A.; Roller, A.; Galanski, M.; Berger, W.; Keppler, B.K. J. Med. Chem. 2009, 52, 5032-5043.

27 Kalaivani, P.; Prabhakaran, R.; Poornima, P.; Dallemer, F.: Vijayalakshmi, K.; Padma, V.V.; Natarajan, K. Organometallics 2012, 31, 8323-8332.

28 Dilruba, S.; Kalayda, G. V. Cancer Chemother. Pharmacol. 2016, 77, 1103-1124.

29 Clavel, C. M.; Păunescu, E.; Nowak-Sliwinska, P.; Griffioen, A. W.; Scopelliti, R.; Dyson, P.J. J. Med. Chem. 2014, 57, 3546-3558.

30 Wong, E.; Giandomenico, C. M. Chem. Rev. 1999, 99, 2451-2466.

31 Hartinger, C.G.; Jakupec, M.A.; Zorbas-Seifried, S.; Groessl, M.; Egger, A.; Berger, W.; Zorbas, H.; Dyson, P.J.; Keppler, B.K. Chemistry and Biodiversity 2008, 5, 2140-2155.

32 Perekalin, D.S.; Molotkov, A. P.; Nelyubina, Y. V.; Anisimova, N.Y.; Kudinov, A.R. Inorg. Chim. Acta, 2014, 409, 390-393.

33 Ang, W. H.; Daldini, E.; Scolaro, C.; Scopelliti, R.; Juillerat-Jeannerat, L.; Dyson, P. J. Inorg. Chem 2006, 45, 9006-9013.

34 Clarke, M. J.; Zhu, F.; Frasca, D. R. Chem. Rev. 1999, 99, 2511-2533.

35 Salassa, L.; Sadler, P. J. J. Med. Chem. 2013, 56, 1291-1300.

36 Yan, Y.K.; Melchart, M.; Habtemariam, A.; Sadler, P.J. Chem. Comm. 2005, 4764-4776.

37 Chelopo, M. P.; Pawar, S. A.; Sokhela, M. K.; Govender, T.; Kruger, H. G.; Maguire, G.E.M. Eur. J. Med. Chem. 2013, 66, 407-414.

38 Smith, G. S.; Therrien, B.; Therrien, B. Dalton Trans. 2011, 40, 10793-10800.

39 Rijt, S. H. Van; Sadler, P. J. Curr. Opin. Drug Discov. 2009, 14, 1089-1097.

40 Dempsey, J. L.; Winklera J. R.; Gray H. B. Dalton Trans. 2011, 40, 10633-10636.

41 Fu, Y.; Habtemariam, A.; Pizarro, A. M.; van Rijt, S. H.; Healey, D. J.; Cooper, P. A.; Shnyder, S. D.; Clarkson, G. J.; Sadler, P. J. J. Med. Chem., 2010, 53, 8192-8196.

42 Shnyder, S. D.; Fu, Y.; Habtemariam, A.; van Rijt, S. H.; Cooper, P. A.; Loadman P. M.; Sadler, P.J. Med. Chem. Comm. 2011, 2, 666-668.

43 Hanif, M.; Babak; M. V.; Hartinger C. G. Drug Discovery Today 2014, 19, 1505-1678.

44 Suntharalingam, K.; Lin, W.; Johnstone, T. C.; Bruno, P. M.; Zheng, Y.-R.; Hemann, M. T.; Lippard, S. J. J. Am. Chem. Soc. **2014**, *1*36, 14413-14416.

45 Büchel, G.E.; Kossatz, S.; Sadique, A.; Rapta, P.; Zalibera, M.; Bucinsky, L.; Komorovsky, S.; Telser, J.; Eppinger, J.; Reinerb, T.; Arion, V. B. Dalton Trans., 2017, 46, 11925-11941.

46 Riedl, C. A.; Flocke, L. S.; Hejl, M.; Roller, A.; Klose, M. H. M.; Jakupec, M. A.; Kandioller, W.; Keppler, B. K. Inorg. Chem. 2017, 56, 528-541.

47 Hosts, S. Bioorganomet. Chemistry, 2003, 8, 2166-2177.

48 Hung, Y.; Kung, W. J.; Taube, H. Inorg. Chem. 1981, 20, 457-463.

49 Peacock A. F. A.; Habtemariam A.; Fernández R.; Walland V.; Fabbiani F. P. A.; Parsons S.; Aird R. E.; Jodrell D. I.; Sadler, P.J. J. Am. Chem. Soc. 2006, 128, 1739-1748.

50 Stebler-Roethlisberger, M.; Hummel, W.; Pittet, P. A.; Buergi, H. B.; Ludi, A.; Merbach, A. E. Inorg. Chem. 1988, 27, 1358-1363.

51 Brumaghim, J. L.; Priepot, J. G.; Girolami G.S. Organomet. 1999, 18, 2139-2144.

52 Wang, F.; Chen, H.; Parsons, S.; Oswald, I. D. H.; Davidson, J. E.; Sadler, P.J. *Chemistry: a European Journal* **2003**, *9*, 5810-5820.

53 Chen, H.; Parkinson, J.A.; Nováková, O.; Bella, J.; Wang, F.;

Dawson, A.; Gould, R.; Parsons, S.; Brabec, V.; Sadler, P.J. *PNAS* 2003, 100, 14623-14628.

54 Đilović, I.; Rubčić, M. ; Vrdoljak, V.; K.Pavelić, S.; Kralj, M.; Piantanida, I.; Cindrić, M. *Bioorg. Med. Chem.* **2008**, *16*, 5189-5198.

55 Rogolino, D.; Bacchi, A.; De Luca, L.; Rispoli, G.; Sechi, M.; Stevaert, A.; Naesens, L.; Carcelli, M. *J. Biol. Inorg. Chem.* **2015**, 20, 1109–1121.

56 Beckford, F.; Dourth, D.; Shaloski Jr., M.; Didion, J.; Thessing, J.; Woods, J.; Crowell, V.; Gerasimchuk, N.; Gonzalez-Sarrías, A.;

Seeram, N.P. J. Inorg. Biochem. 2011, 105, 1019-1029.

57 Tan, K. W.; Farina, Y.; Ng, C. H.; Maah M. J.; Ng, S. W. Acta Cryst. Sect E, **2008**, 64, 01035.

58 Fun, H.-K.; Kia, R.; D'Silva, E. D.; Patil, P. S.; Dharmaprakash, S. M. *Acta Cryst. Sect E*, **2008**, *64*, 02274.

59 De Oliveira, A. B.; Feitosa, B. R. S.; Näther C.; Jess, I. *Acta Cryst Sect E*, **2013**, *69*, 01861.

60 Schmid, W.F.; John, R.O.; Arion, V.B.; Jakupec, M.A.; Keppler, B.K. *Organomet.* **2007**, *26*, 6643–6652.

61 Belicchi Ferrari, M.; Capacchi, S.; Pelosi, G.; Reffo, G.; Tarasconi, P.; Albertini, R.; Pinelli, S.; Lunghi, P. *Inorg. Chim. Acta* **1999**, *286*, 134-141.

62 Palla, G.; Predieri, G.; Domiano, P.; Vignali, C.; Turner, W. *Tetrahedron* **1986**, 3649-3654.

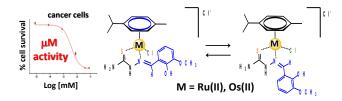
63 Su, W.; Tang, Z.; Li, P.; Wang, G.; Xiao, Q.; Li, Y.; Huang, S.; Gu, Y.; Laid, Z.; Zhang, Y. *Dalton Trans.* **2016**, *45*,19329-19340.

64 Khalilian, M.H.; Mirzaei, S.; Taherpour, A. New J. Chem. 2015, 39, 9313-9324.

65 Wei Su, W; Peng, B; Li, P.; Xiao, Q.; Huang, S.; Gu, Y.; Lai, Z. *Appl. Organomet. Chem.* **2016**, 1–7.

66 Patra, M.; Joshi, T.; Pierroz, V.; Ingram, K.; Kaiser, M.; Ferrari, S.; Spingler, B.; Keiser, J.; Gasser, G. *Chem. Eur. J.* **2013**, *19*, 14768-14772.

67 Gourdier, I.; Del Rio, M.; Crabbe, L.; Candeil, L.; Copois, V.; Ychou, M.; Auffray, C.; Martineau, P.; Mechti, N.; Pommier, Y.; Pau, B. *FEBS Lett.* **2002**, *529*, *232-236*.


68 Bennett, M. A.; Smith, A. K. J. Chem. Soc., Dalton Trans. 1974, 233-241.

69 CrysAlis PRO; Oxford Diffraction Ltd.: Abington, Oxfordshire, U.K., 2007

70 Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. **2009**, *42*, 339–341.

71 Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, **1997**.

Table of Contents Graphic

