171 research outputs found
Development and validation of the MosquitoWise survey to assess perceptions towards mosquitoes and mosquito-borne viruses in Europe
Due to climate change and the expanding geographical ranges of key mosquito species, several mosquito-borne viruses (MBVs) have recently emerged in Europe. Understanding people’s perceptions and behaviours towards these viruses and the mosquitoes capable of transmitting them is crucial for implementing effective prevention measures and targeted communication campaigns. However, there is currently no appropriate validated survey for European populations to assess this. This study developed and validated a standardized survey, based on the Health Belief Model (HBM), to assess perceptions of mosquitoes and MBVs among Europe’s residents. The survey was distributed online to United Kingdom (UK), Dutch and Spanish participants through panel providers. Survey validity and reliability were tested using confirmatory factor analysis (CFA) and Cronbach’s alpha. The optimised survey was completed by 336 UK, 438 Dutch and 475 Spanish residents, respectively, and the HBM items passed our validity and reliability testing in all three countries. The final survey has 57 questions, including 19 validated HBM items, and questions to assess demographic characteristics, knowledge, prevention measures and behavioural determinants. Our MosquitoWise survey bridges researchers' understandings of European residents’ perceptions and knowledge as a first step to improve preventive behaviour towards mosquitoes and MBVs and guide prevention and communication initiatives.</p
Decision-support tools to build climate resilience against emerging infectious diseases in Europe and beyond
Climate change is one of several drivers of recurrent outbreaks and geographical range expansion of infectious diseases in Europe. We propose a framework for the co-production of policy-relevant indicators and decision-support tools that track past, present, and future climate-induced disease risks across hazard, exposure, and vulnerability domains at the animal, human, and environmental interface. This entails the co-development of early warning and response systems and tools to assess the costs and benefits of climate change adaptation and mitigation measures across sectors, to increase health system resilience at regional and local levels and reveal novel policy entry points and opportunities. Our approach involves multi-level engagement, innovative methodologies, and novel data streams. We take advantage of intelligence generated locally and empirically to quantify effects in areas experiencing rapid urban transformation and heterogeneous climate-induced disease threats. Our goal is to reduce the knowledge-to-action gap by developing an integrated One Health—Climate Risk framework
Microbial biotransformation of beclomethasone dipropionate by Aspergillus niger
In the present research, the steroidal anti-asthmatic drug beclomethasone dipropionate was subjected to microbial biotransformation by Aspergillus niger. Beclomethasone dipropionate was transformed into various metabolites first time from microbial transformation. New drug metabolites produced can act as new potential drug molecules and can replace the old drugs in terms of safety, efficacy, and least resistance. They were purified by preparative thin layer chromatography technique, and their structures were elucidated using modern spectroscopic techniques, such as 13C NMR, 1H NMR, HMQC, HMQC, COSY, and NOESY, and mass spectrometry, such as EI-MS. Four metabolites were purified: (i) beclomethasone 17-monopropionate, (ii) beclomethasone 21-monopropionate, (iii) beclomethasone, and (iv) 9beta,11beta-epoxy-17,21-dihydroxy-16beta-methylpregna-1,4-diene-3,20-dione 21-propionate
Rapid recovery of photosynthesis and water relations following soil drying and re-watering is related to the adaptation of desert shrub Ephedra alata subsp. alenda (Ephedraceae) to arid environments
Ephedra alata subsp. alenda is the most important pioneer plant of the moving and semi-stable sand dunes in the deserts and steppes of south Tunisia and occurs naturally in the Grand Erg Oriental, one of the most extreme habitats for plant growth on the planet. A new analysis of physiological performance of this medically important and internationally threatened xerophytic shrub was conducted to assess possible mechanisms of drought tolerance and how these relate to its ecological success. Five-month old plants, grown under controlled climatic conditions, were subjected to a well-watered control treatment or progressive drought by withholding water for 14d with subsequent recovery for 7d. Soil water depletion significantly reduced stem relative water content (RWC) water potential (Ψw) and osmotic potential (Ψπ). Ephedra displayed more negative Ψw and Ψπ values of ca. -3.5 and -4.1MPa, respectively, at the end of the drought treatment, and were associated with turgor loss. Low stem Ψw reduced stomatal conductance (gs), photosynthetic CO2 assimilation rates (ACO2), transpiration (E) and internal CO2 concentration (Ci). However, instantaneous (WUE; ACO2 E-1) and intrinsic (WUEi; ACO2 gs-1) water use efficiency (WUE) increased gradually as water deficit was intensified. Stomatal closure therefore only exerted limited control against dehydration and could not compensate for decreases in soil water status, typical of anisohydric behavior. Drought-stressed stems accumulated high levels of proline up to 480% of control values, highlighting a pivotal role in osmotic adjustment during intense water deficit. In contrast, the osmotic adaptation to soluble sugars was limited. Drought-stressed plants increased ACO2, E, gs and Ci and decreased WUE and WUEi during the first 48h after re-watering, such that they reached similar values to those of control plants by the end of the experiment. Stem proline levels of drought-stressed plants returned to near control values with re-watering. Overall, rapid recovery of photosynthesis following drought-breaking moisture appears to be a critical mechanism allowing E. alata to withstand and survive dry environments
Bioremediation of PCP by Trichoderma and Cunninghamella Strains Isolated from Sawdust
Four fungal isolates, SD12, SD14, SD19 and SD20 isolated from the aged sawdust grew on agar plates supplemented with PCP up to a concentration of 100 mg L-1. At high PCP concentration, isolate SD12 showed the highest radial growth rate of 10 mm day-1, followed by SD14 and SD19 both with 4.5 mm day-1 and SD20 with 4.2 mm day-1. Ultrastructural study on the effect of PCP on the PCP tolerant fungi using scanning electron microscope showed that high concentration of PCP caused the collapse of both fungal hyphae and spores. Among the four PCP tolerant fungi examined, isolate SD12 showed the least structural damage at high PCP concentration of 100 mg L-1. This fungal isolate was further characterized and identified as Cunninghamella sp. UMAS SD12. Preliminary PCP biodegradation trial performed in liquid minimal medium supplemented with 20 mg L-1 of PCP using Cunninghamella sp. UMAS SD12 showed that the degradation up to 51.7% of PCP in 15 days under static growth condition
Bioavailability of Plant-Derived Antioxidants
Natural products with antioxidant properties have been extensively utilized in the pharmaceutical and food industry and have also been very popular as health-promoting herbal products. This review provides a summary of the literature published around the first decade of the 21st century regarding the oral bioavailability of carotenoids, polyphenols and sulfur compounds as the three major classes of plant-derived antioxidants. The reviewed original research includes more than 40 compounds belonging to the above mentioned classes of natural antioxidants. In addition, related reviews published during the same period have been cited. A brief introduction to general bioavailability-related definitions, procedures and considerations is also included
The Potential Role of School Citizen Science Programs in Infectious Disease Surveillance: A Critical Review
Public involvement in science has allowed researchers to collect large-scale and real-time data and also engage citizens, so researchers are adopting citizen science (CS) in many areas. One promising appeal is student participation in CS school programs. In this literature review, we aimed to investigate which school CS programs exist in the areas of (applied) life sciences and if any projects target infectious disease surveillance. This review’s objectives are to determine success factors in terms of data quality and student engagement. After a comprehensive search in biomedical and social databases, we found 23 projects. None of the projects found focused on infectious disease surveillance, and the majority centered around species biodiversity. While a few projects had issues with data quality, simplifying the protocol or allowing students to resubmit data made the data collected more usable. Overall, students at different educational levels and disciplines were able to collect usable data that was comparable to expert data and had positive learning experiences. In this review, we have identified limitations and gaps in reported CS school projects and provided recommendations for establishing future programs. This review shows the value of using CS in collaboration with traditional research techniques to advance future science and increasingly engage communities
- …