12 research outputs found
The possible protective effects of virgin olive oil and Nigella sativa seeds on the biochemical and histopathological changes in pancreas of hyperlipidaemic rats
Background: Hyperlipidaemia is a risk factor for the development and progression of atherosclerosis and is linked to various diseases. This study was done to evaluate the possible protective effects of virgin olive oil and Nigella sativa seeds on the biochemical and histopathological changes which occurred in the pancreas of the rats. The study lasted 8 weeks and included 24 albino rats that were divided into four groups (6 rats each); Group I — control group, fed with normal standard diet, Group II — fed with high fat diet (HFD), Group III — fed with HFD and virgin olive oil, Group IV — fed with HFD and Nigella sativa seeds powder.
Materials and methods: After finishing the experiment, blood samples were collected and assessed for the lipid profile, fasting blood glucose, pancreatic amylase and insulin levels. Then, the rats were sacrificed and the pancreata were extracted and slices of them were processed for histological examination using haematoxylin stain and Masson’s trichrome stain. Small fragments from the tail of the pancreata were extracted and processed for electron microscopic examination. The statistical analysis of the data using the appropriate statistical tests was also conducted.
Results: In the present study, the serum lipid profile in hyperlipidaemic rats was ameliorated in rats fed on high fat diet with virgin olive oil or Nigella sativa seed powder, which was reflected by a significant decrease in total cholesterol, low-density lipoprotein-cholesterol and triglycerides. Moreover, Nigella sativa decreased high-density lipoprotein (HDL), while virgin olive oil significantly increased HDL. Also a significant decrease in the serum levels of blood glucose and amylase and a significant increase in insulin levels were present in these groups. The histological and ultrastructural results revealed regeneration of the exocrine and endocrine parts of the pancreatic tissues from the hyperlipidaemic rats fed with virgin olive oil or Nigella sativa seeds.
Conclusions: In this study, the biochemical results were paralleled to the histological and ultrastructural results; therefore, it could be concluded that virgin olive oil and Nigella sativa seeds had antihyperlipidaemic and hypoglycaemic effects and they could protect the pancreas from hyperlipidaemia-induced injury. Daily consumption of virgin olive oil and Nigella sativa seeds in the diet is highly recommended
Stereoselective HPLC assay of donepezil enantiomers with UV detection and its application to pharmacokinetics in rats
Abstract This investigation describes a new precise, sensitive and accurate stereoselective HPLC method for the simultaneous determination of donepezil enantiomers in tablets and plasma with enough sensitivity to follow its pharmacokinetics in rats up to 12 h after single oral dosing. Enantiomeric resolution was achieved on a cellulose tris (3,5-dimethylphenyl carbamate) column known as Chiralcel OD, with UV detection at 268 nm, and the mobile phase consisted of n-hexane, isopropanol and triethylamine (87:12.9:0.1). Using the chromatographic conditions described, donepezil enantiomers were well resolved with mean retention times of 12.8 and 16.3 min, respectively. Linear response (r > 0.994) was observed over the range of 0.05-2 g/ml of donepezil enantiomers, with detection limit of 20 ng/ml. The mean relative standard deviation (R.S.D.%) of the results of within-day precision and accuracy of the drug were ≤10%. There was no significant difference (p > 0.05) between inter-and intra-day studies for each enantiomers which confirmed the reproducibility of the assay method. The mean extraction efficiency was 92.6-93.2% of the enantiomers. The proposed method was found to be suitable and accurate for the quantitative determination of donepezil enantiomers in tablets. The assay method also shows good specificity to donepezil enantiomers, and it could be successfully applied to its pharmacokinetic studies and to therapeutic drug monitoring
Development of the human shoulder joint during the embryonic and early fetal stages: anatomical considerations for clinical practice
Although several studies have been published regarding the morphology and anatomical variations of the human shoulder joint, most have dealt with adult individuals. Those looking into the development of the joint have been focused on specific structures or have observed specimens in advanced gestational stages. The goal of this paper is to perform a complete analysis of the embryonic and early fetal development of the elements in the shoulder joint, and to clarify some contradictory data in the literature. In our study, serial sections of 32 human embryos (Carnegie stages 16-23) and 26 fetuses (9-13Â weeks) were analyzed. The chondrogenic anlagen of the humerus and the medial border of the scapula can be observed from as early as Carnegie stage 17, whereas that of the rest of the scapula appears at stage 18. The osteogenic process begins in week 10 for the humeral head and week 11 for the scapula. At stage 19 the interzone becomes apparent, which will form the glenohumeral joint. In the next stage the glenohumeral joint will begin delaminating and exhibiting a looser central band. Denser lateral bands will join the humeral head (caput humeri) and the margins of the articular surface of the scapula, thus forming the glenoid labrum, which can be fully appreciated by stage 22. In 24-mm embryos (stage 21) we can observe, for the first time, the long head of the biceps tendon (which is already inserted in the glenoid labrum by week 9), and the intertubercular sulcus, whose depth is apparent since week 12. Regarding ligamentous structures, the coracohumeral ligament is observed at the end of Carnegie stage 23, whereas the primitive glenohumeral ligament already appeared in week 10. The results of this study provide a detailed description of the morphogenesis, origin and chronological order of appearance of the main intrinsic structures of the human shoulder joint during late embryonic and early fetal development. We expect these results to help explain several functional aspects of the shoulder joint, and to clarify some contradictory data in the literature regarding this complex anatomical and biomechanical structure, helping future researchers in their efforts