172 research outputs found

    Diagnosis of atopic dermatitis : from bedside to laboratory

    Get PDF
    Atopic dermatitis (AD) is essentially diagnosed clinically. In babies and young children, the diagnosis is usually straightforward. Dry, very pruritic dermatitis starts on the cheeks, with the neck and trunk often involved, but the nappy area spared. Limb involvement follows later – first extensoral, later classically flexural. This is mostly the picture of AD. In adults, the presentation may vary widely. Classic flexural dermatitis may persist, but erythroderma (whole-body involvement), head and neck dermatitis, isolated hand dermatitis and nummular dermatitis may be more difficult to identify as AD.http://www.samj.org.zaam201

    Diagnosis of atopic dermatitis: From bedside to laboratory

    Get PDF
    Atopic dermatitis (AD) is essentially diagnosed clinically. In babies and young children, the diagnosis is usually straightforward. Dry, very pruritic dermatitis starts on the cheeks, with the neck and trunk often involved, but the nappy area spared. Limb involvement follows later – first extensoral, later classically flexural. This is mostly the picture of AD. In adults, the presentation may vary widely. Classic flexural dermatitis may persist, but erythroderma (whole-body involvement), head and neck dermatitis, isolated hand dermatitis and nummular dermatitis may be more difficult to identify as AD.

    Telomere maintenance and telomerase activity are differentially regulated in asexual and sexual worms

    Get PDF
    In most sexually reproducing animals, replication and maintenance of telomeres occurs in the germ line and during early development in embryogenesis through the use of telomerase. Somatic cells generally do not maintain telomere sequences, and these cells become senescent in adults as telomeres shorten to a critical length. Some animals reproduce clonally and must therefore require adult somatic mechanisms for maintaining their chromosome ends. Here we study the telomere biology of planarian flatworms with apparently limitless regenerative capacity fueled by a population of highly proliferative adult stem cells. We show that somatic telomere maintenance is different in asexual and sexual animals. Asexual animals maintain telomere length somatically during reproduction by fission or when regeneration is induced by amputation, whereas sexual animals only achieve telomere elongation through sexual reproduction. We demonstrate that this difference is reflected in the expression and alternate splicing of the protein subunit of the telomerase enzyme. Asexual adult planarian stem cells appear to maintain telomere length over evolutionary timescales without passage through a germ-line stage. The adaptations we observe demonstrate indefinite somatic telomerase activity in proliferating stem cells during regeneration or reproduction by fission, and establish planarians as a pertinent model for studying telomere structure, function, and maintenance

    A Dual Platform Approach to Transcript Discovery for the Planarian Schmidtea Mediterranea to Establish RNAseq for Stem Cell and Regeneration Biology

    Get PDF
    The use of planarians as a model system is expanding and the mechanisms that control planarian regeneration are being elucidated. The planarian Schmidtea mediterranea in particular has become a species of choice. Currently the planarian research community has access to this whole genome sequencing project and over 70,000 expressed sequence tags. However, the establishment of massively parallel sequencing technologies has provided the opportunity to define genetic content, and in particular transcriptomes, in unprecedented detail. Here we apply this approach to the planarian model system. We have sequenced, mapped and assembled 581,365 long and 507,719,814 short reads from RNA of intact and mixed stages of the first 7 days of planarian regeneration. We used an iterative mapping approach to identify and define de novo splice sites with short reads and increase confidence in our transcript predictions. We more than double the number of transcripts currently defined by publicly available ESTs, resulting in a collection of 25,053 transcripts described by combining platforms. We also demonstrate the utility of this collection for an RNAseq approach to identify potential transcripts that are enriched in neoblast stem cells and their progeny by comparing transcriptome wide expression levels between irradiated and intact planarians. Our experiments have defined an extensive planarian transcriptome that can be used as a template for RNAseq and can also help to annotate the S. mediterranea genome. We anticipate that suites of other 'omic approaches will also be facilitated by building on this comprehensive data set including RNAseq across many planarian regenerative stages, scenarios, tissues and phenotypes generated by RNAi

    Incursion of brown algae and sargassum fishes into the Cochin backwaters

    Get PDF
    An incursion of sea weeds like brown algae and reef fishes like Sargassum fishes was observed in the Cochin backwaters on 6-12-1991. It appears that the habitat disturbance caused by the human interference along the southern part of the west coast brought the reef fishes along with the marine algae into the backwaters being assisted by the strong northerly current prevailing during the season

    Argonaute Utilization for miRNA Silencing Is Determined by Phosphorylation-Dependent Recruitment of LIM-Domain-Containing Proteins

    Get PDF
    As core components of the microRNA-induced silencing complex (miRISC), Argonaute (AGO) proteins interact with TNRC6 proteins, recruiting other effectors of translational repression/mRNA destabilization. Here, we show that LIMD1 coordinates the assembly of an AGO-TNRC6 containing miRISC complex by binding both proteins simultaneously at distinct interfaces. Phosphorylation of AGO2 at Ser 387 by Akt3 induces LIMD1 binding, which in turn enables AGO2 to interact with TNRC6A and downstream effector DDX6. Conservation of this serine in AGO1 and 4 indicates this mechanism may be a fundamental requirement for AGO function and miRISC assembly. Upon CRISPR-Cas9-mediated knockout of LIMD1, AGO2 miRNA-silencing function is lost and miRNA silencing becomes dependent on a complex formed by AGO3 and the LIMD1 family member WTIP. The switch to AGO3 utilization occurs due to the presence of a glutamic acid residue (E390) on the interaction interface, which allows AGO3 to bind to LIMD1, AJUBA, and WTIP irrespective of Akt signaling

    Combining Classical and Molecular Approaches Elaborates on the Complexity of Mechanisms Underpinning Anterior Regeneration

    Get PDF
    The current model of planarian anterior regeneration evokes the establishment of low levels of Wnt signalling at anterior wounds, promoting anterior polarity and subsequent elaboration of anterior fate through the action of the TALE class homeodomain PREP. The classical observation that decapitations positioned anteriorly will regenerate heads more rapidly than posteriorly positioned decapitations was among the first to lead to the proposal of gradients along an anteroposterior (AP) axis in a developmental context. An explicit understanding of this phenomenon is not included in the current model of anterior regeneration. This raises the question what the underlying molecular and cellular basis of this temporal gradient is, whether it can be explained by current models and whether understanding the gradient will shed light on regenerative events. Differences in anterior regeneration rate are established very early after amputation and this gradient is dependent on the activity of Hedgehog (Hh) signalling. Animals induced to produce two tails by either Smed-APC-1(RNAi) or Smed-ptc(RNAi) lose anterior fate but form previously described ectopic anterior brain structures. Later these animals form peri-pharyngeal brain structures, which in Smed-ptc(RNAi) grow out of the body establishing a new A/P axis. Combining double amputation and hydroxyurea treatment with RNAi experiments indicates that early ectopic brain structures are formed by uncommitted stem cells that have progressed through S-phase of the cell cycle at the time of amputation. Our results elaborate on the current simplistic model of both AP axis and brain regeneration. We find evidence of a gradient of hedgehog signalling that promotes posterior fate and temporarily inhibits anterior regeneration. Our data supports a model for anterior brain regeneration with distinct early and later phases of regeneration. Together these insights start to delineate the interplay between discrete existing, new, and then later homeostatic signals in AP axis regeneration

    High through-put sequencing of the Parhyale hawaiensis mRNAs and microRNAs to aid comparative developmental studies

    Get PDF
    Understanding the genetic and evolutionary basis of animal morphological diversity will require comparative developmental studies that use new model organisms. This necessitates development of tools for the study of genetics and also the generation of sequence information of the organism to be studied. The development of next generation sequencing technology has enabled quick and cost effective generation of sequence information. Parhyale hawaiensis has emerged as a model organism of choice due to the development of advanced molecular tools, thus P. hawaiensis genetic information will help drive functional studies in this organism. Here we present a transcriptome and miRNA collection generated using next generation sequencing platforms. We generated approximately 1.7 million reads from a P. hawaiensis cDNA library constructed from embryos up to the germ band stage. These reads were assembled into a dataset comprising 163,501 transcripts. Using the combined annotation of Annot8r and pfam2go, Gene Ontology classifications was assigned to 20,597 transcripts. Annot8r was used to provide KEGG orthology to our transcript dataset. A total of 25,292 KEGG pathway assignments were defined and further confirmed with reciprocal blast against the NCBI nr protein database. This has identified many P. hawaiensis gene orthologs of key conserved signalling pathways involved in development. We also generated small RNA sequences from P. hawaiensis, identifying 55 conserved miRNAs. Sequenced small RNAs that were not annotated by stringent comparison to mirBase were used to search the Daphnia pulex for possible novel miRNAs. Using a conservative approach, we have identified 51 possible miRNA candidates conserved in the Daphnia pulex genome, which could be potential crustacean/arthropod specific miRNAs. Our study presents gene and miRNA discovery in a new model organism that does not have a sequenced genome. The data provided by our work will be valuable for the P. hawaiensis community as well as the wider evolutionary developmental biology community
    corecore