37 research outputs found

    Isolation and identification of Indigenous Bacteria from Egyptian Oil field for Enhanced Oil Recovery Applications

    Get PDF
    Conventional EOR Chemical Techniques have an environmental hazards, when injected to formation. Conventional EOR Techniques have a high Production cost and complex operational process and equipment. In 1926, J. W. Beckman made a breakthrough in terms that he proposed developing a method to enhance oil by using microorganisms. MEOR is a technology using microorganisms to facilitate, increase oil production from reservoir. The aims of this PhD study are to investigate the application of the indigenous bacteria in Egyptian crude oil for enhanced oil recovery, and study the effects of salinity, nutrients and concentration on bacteria culture (miscibility)

    A Case Study of Solar Energy Application in Enhanced Oil Recovery

    Get PDF
    Abstract Steam process is one of the most beneficial thermal enhanced oil recovery (TEOR) techniques, which is applied for heavy oil reservoirs to decrease viscosity, thus increasing the production rate. Traditionally, producing steam for TEOR requires consumption of massive amount of natural gas. Issaran Field is one of the largest heavy and extra heavy oil field in the world that was discovered in 1981 in Egyptian Eastern Desert. The required demand of steam for Issaran field is 25,000 bbl./day at 550 ˚F and 1000 psi. The objective of this study is to design a parabolic trough collectors (PTC) plant, which fulfils the required steam consumption need by Issaran heavy oil field. Results showed that solar energy has the ability to generate steam at the same quality as gas-fired system. PTC plant will produce almost 44.3% of total required steam. The cost of steam produced will be 0.658 /steambblinsteadof3/steam bbl instead of 3 from gas-fired system. The cost of producing oil from the hybrid system is in average 19.8 /bblinsteadof25/bbl instead of 25 /bbl from gas-fired system

    Study of Microbial Enhanced Oil Recovery using Indigenous Bacteria in Egyptian Oil Reservoirs

    Get PDF
    Microorganisms provide a unique opportunity for improving oil recovery economically and environmentally in a technique called “Microbial Enhanced Oil Recovery MEOR”. This study highlights the importance and potential of microbiology in petroleum engineering. Biosurfactant production is one of the most efficient mechanisms in microbial enhanced oil recovery (MEOR) processes. Biosurfactants have recently attained extended attention because they have numerous benefits over chemical synthetic surfactants, including higher biodegradability, lower toxicity, higher foaming, environmental compatibility, and effective properties under harsh conditions. The present study investigates the production of biosurfactants by indigenous bacteria isolated from Egyptian oil fields, and the use of these biosurfactants in enhancing the oil recovery. Fifty-nine Egyptian oil reservoirs were screened to investigate the potential for MEOR in Egyptian oil fields. The results showed that 8 reservoirs from the Gulf of Suez and 3 reservoirs from the Western Desert had the potential for MEOR. The bacterial isolation and identification of the collected crude oil samples from the Egyptian oil fields that have the potential for MEOR showed 11 isolated strains, which are Pseudomonas stutzeri, Clostridium spp, pseudomonas aeruginosa, pseudomonas fluorescens, Brevibacterium spp, Cellulosimicrobium spp, Pseudomonas panipatensis, Enterobacter spp, Bacillus flexus, Bacillus licheniformis, and Bacillus subtilis. The isolated strains Bacillus subtilis and Bacillus licheniformis were selected for further studies in this research because they are reported as good biosurfactants-producing bacteria under facultative or anaerobic conditions, spore forming, and non-pathogenic. The results of surface activity and bacteria growth examination also showed that the selected bacterial strains Bacillus licheniformis and Bacillus subtilis could produce effective biosurfactants that reached their maximum surface activity and reach maximum after 24 h of incubation. The results of emulsification activity examination showed that produced biosurfactants by Bacillus licheniformis and Bacillus subtilis could significantly emulsify crude oil with emulsification indices of 50% and 64%, respectively. The contact angle measurement showed that the oil was more detached from the sandstone surface when submerged in an aqueous solution of the produced biosurfactants, where the biosurfactants produced by Bacillus subtilis and Bacillus licheniformis decreased the contact angle of the oil drop from 104.96° and 107.30° to 85.40° and 88.72° after 24 h, respectively. Similarly, the new proposed medium decreased the contact angle of the oil drop from 112.30° and 110.90° to 63.85° and 69.33° after 24 h, respectively, which could facilitate the recovery of remaining oil. High stability was observed at high temperatures for a long-time period and more than 60% of their surface and emulsification activities were maintained over a wide range of pH and salinity. The core flooding tests showed the potential of the biosurfactants produced by Bacillus licheniformis and Bacillus subtilis to recover up to 31% and 39% of additional oil over the water flooding residual oil saturation under simulated reservoir conditions, respectively. In addition to the beneficial effects of the selected indigenous bacteria in producing effective biosurfactants, the performed environmental risk assessment showed that Bacillus licheniformis and Bacillus subtilis are environmentally safe, have no potential for toxicity, and no risk could occur for MEOR

    Environmental comparative study of biosurfactants production and optimization using bacterial strains isolated from Egyptian oil fields

    Get PDF
    Biosurfactants have recently gained popularity because they have numerous benefits over chemical synthetic surfactants, including higher biodegradability, lower toxicity, higher foaming, environmental compatibility, and effective properties under harsh conditions. This study aimed to produce effective biosurfactants by selected bacterial strains isolated from Egyptian oil fields to improve oil recovery and investigate their environmental aspects for microbial enhanced oil recovery. The selected strains were incubated in a new proposed nutrient medium H to produce biosurfactants with optimum surface and emulsification activities. Stability studies were conducted to examine the tolerance of produced biosurfactants in harsh reservoir conditions. Core flooding tests were performed to investigate the potential of produced biosurfactants in enhancing oil recovery. The environmental risk assessment was conducted to investigate if there are any possible threats of the selected bacterial strains. Results showed that selected bacterial strains Bacillus licheniformis and Bacillus subtilis could produce effective biosurfactants that reached their maximum surface activity after 24 h of incubation by reducing the surface tension from 71.8 mN/m to 27.13 mN/m and 25.74 mN/m, and the interfacial tension against kerosene from 48.4 mN/m to 1.27 mN/m and 0.38 mN/m at critical micelle concentration of 0.06 g/l and 0.04 g/l, respectively. The produced biosurfactants by Bacillus licheniformis and Bacillus subtilis showed significant emulsification activity against crude oil with emulsification indices of 50.2% and 63.7%, respectively. High stability was observed at high temperatures for a long-time period and more than 60% of their surface and emulsification activities were maintained over a wide range of pH and salinity. It was also found that 31.41–39.35% of additional oil could be recovered by the produced biosurfactants. Finally, Bacillus licheniformis and Bacillus subtilis are environmentally safe, have no potential for toxicity, and no risk could occur for MEOR

    Genetic Changes of S Gene during Co-inoculation of Two Infectious Bronchitis Virus Vaccines in SPF Chicks

    Get PDF
    Despite widespread immunizations, infectious bronchitis (IB) remains a significant issue in the Egyptian poultry industry. Multiple IBV genotypes, GI-1, GI-13, GI-16, and GI-23 have been continually circulating among chicken flocks in Egypt, inducing a substantial economic loss to the poultry sector. In addition, live attenuated vaccines representing classical and variant strains can control IBV in Egypt, mainly H120 and 793B. The H120 vaccine is widely spread and offers inadequate protection against heterotypic IBVs in the field. Therefore, a homologous live-attenuated VAR2 vaccine was developed from the Egyptian variant-2 strain Eg/1212B/2012.IB. Variant II vaccine protects against the homologous IBV challenge under experimental and field circumstances. In this study, an experimental trial was performed to simulate field practices such as heterologous vaccination of day-old specific pathogen-free chicks with IBV H120 vaccine (representing GI-1) and IB Var 2 vaccine (representing GI- 23). The current study aimed to determine the existence of nucleotide and amino acid variations within the S gene in isolated viruses following ten passages in the same bird. The deduced amino acid sequence of the S gene indicated viruses isolated from the 6th and 10th passages were identical and shared (96 %) and (83 %) identities with the IB variant II vaccine and H120, respectively. However, amino acid substitutions were observed at 26 positions in the N terminal domain (S1) and S2 is conserved compared to IB Var 2 vaccine. Most amino acid modifications occurred in the receptor binding domain (RBD) of the S1 gene. HVR2 has seven amino acid changes compared to the IB Var II vaccine. Isolates of P6 and P10 lacked IBV glycosylation site at position 139 which was detected in IBV/EG/1212B/2012 as well as IB variant II vaccine. The study also revealed no evidence of recombination between the two used live vaccines

    SDG Final Decade of Action: Resilient Pathways to Build Back Better from High-Impact Low-Probability (HILP) Events

    Get PDF
    Data Availability Statement: Not applicable.Copyright © 2022 by the authors. The 2030 Sustainable Development Goals (SDGs) offer a blueprint for global peace and prosperity, while conserving natural ecosystems and resources for the planet. However, factors such as climate-induced weather extremes and other High-Impact Low-Probability (HILP) events on their own can devastate lives and livelihoods. When a pandemic affects us, as COVID-19 has, any concurrent hazards interacting with it highlight additional challenges to disaster and emergency management worldwide. Such amplified effects contribute to greater societal and environmental risks, with cross-cutting impacts and exposing inequities. Hence, understanding how a pandemic affects the management of concurrent hazards and HILP is vital in disaster risk reduction practice. This study reviews the contemporary literature and utilizes data from the Emergency Events Database (EM-DAT) to unpack how multiple extreme events have interacted with the coronavirus pandemic and affected the progress in achieving the SDGs. This study is especially urgent, given the multidimensional societal impacts of the COVID-19 pandemic amidst climate change. Results indicate that mainstreaming risk management into development planning can mitigate the adverse effects of disasters. Successes in addressing compound risks have helped us understand the value of new technologies, such as the use of drones and robots to limit human exposure. Enhancing data collection efforts to enable inclusive sentinel systems can improve surveillance and effective response to future risk challenges. Stay-at-home policies put in place during the pandemic for virus containment have highlighted the need to holistically consider the built environment and socio-economic exigencies when addressing the pandemic’s physical and mental health impacts, and could also aid in the context of increasing climate-induced extreme events. As we have seen, such policies, services, and technologies, along with good nutrition, can significantly help safeguard health and well-being in pandemic times, especially when simultaneously faced with ubiquitous climate-induced extreme events. In the final decade of SDG actions, these measures may help in efforts to “Leave No One Behind”, enhance human–environment relations, and propel society to embrace sustainable policies and lifestyles that facilitate building back better in a post-pandemic world. Concerted actions that directly target the compounding effects of different interacting hazards should be a critical priority of the Sendai Framework by 2030.This research received no external funding

    Imaging of hydrothermal altered zones in Wadi Al-Bana, in southern Yemen, using remote sensing techniques and very low frequency–electromagnetic data

    Get PDF
    © 2019, Saudi Society for Geosciences. Economic mineralization and hydrothermally altered zones are areas of great economic interests. This study focusses on hydrothermal altered zones of high mineralization potentials in Wadi Al-Bana, in southern Yemen. An azimuthal very low frequency–electromagnetic (AVLF-EM) data acquisition was conducted in search for mineralization in the study area. The study integrated observations from geophysical field data with others extracted from object-oriented principal component analysis (PCA) to better map and understand mineralization in the investigated area. This technique was applied to two data sets, ASTER and Landsat 8 Operational Land Imager (OLI) imagery. The results of PCA revealed high accuracy in detecting alteration minerals and for mapping zones of high concentration of these minerals. The PCA-based distribution of selected alteration zones correlated spatially with high conductivity anomalies in the subsurface that were detected by VLF measurements. Finally, a GIS model was built and successfully utilized to categorize the resulted altered zones, into three levels. [Figure not available: see fulltext.]

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    Get PDF
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic

    ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration

    Get PDF

    Biosurfactant production using Egyptian oil fields indigenous bacteria for microbial enhanced oil recovery

    No full text
    Biosurfactant production is one of the most efficient mechanisms in microbial enhanced oil recovery (MEOR) processes. This work investigates the production of biosurfactants by indigenous bacteria isolated from Egyptian oil fields, and how to optimize these produced biosurfactants for MEOR. 59 Egyptian oil reservoirs were screened to evaluate the potential applicability of MEOR processes, based on their rock and fluid properties. Results showed that 8 reservoirs from the Gulf of Suez and 3 reservoirs from the Western Desert had the potential to MEOR. Combined analysis of morphological, and biochemical characterization was performed on the 11 bacterial strains isolated from different crude oil samples collected from the reservoirs that have the potential to MEOR process to identify their types. Bacillus spp, a bacilli species that can produce biosurfactants, was selected for further studies. To optimize the surface activity of the produced biosurfactant, ten different reported nutrient media, and a new proposed nutrient media were examined. Bacillus spp has shown the ability to produce a very active biosurfactant that reduced the surface tension of water from 71.8 ± 1.9 mN/m to 25.7 ± 1.2 mN/m, and the interfacial tension of water against kerosene from 48.4 ± 2.1 mN/m to 0.38 ± 0.07 mN/m at Critical Micelle Concentration (CMC) of 0.04 ± 0.01 g/l, in a medium supplemented by the new proposed nutrient medium H. The growth rate of Bacillus spp was studied, and it was found it reached its maximum (OD600nm 2.59 ± 0.16) after 24 h of incubation. Biosurfactant production has no significant change in its surface activity over a wide range of temperature range up to 120 °C, which means the studied species Bacillus spp is a thermophilic bacterium. Bacillus spp grew well in the presence of high salt concentration up to 20% (w/v) NaCl, the optimal surface activity was obtained in the range of 0–2% (w/v) NaCl, and at pH 7. The emulsification activity of the produced biosurfactant was examined, and it reached the maximum (69.6 ± 1.5%) against kerosene at temperature 25 °C, Salinity 0% (w/v) NaCl (distilled water), and pH 7. The produced biosurfactant was purified and extracted by acid precipitation method, and the biosurfactant yield of the purified compound was found to be 2.8 ± 0.3 g/l. Finally, the core-flooding experiments were conducted to investigate the effect of produced biosurfactants by Bacillus subtilis in oil recovery. The obtained results reveal the potential of Bacillus spp to grow in the new proposed medium H and produce effective and efficient biosurfactants that enhanced oil recovery by 25.19–39.35% of additional oil over the water flooding residual oil saturation in the studied cores and retain more than 60% of its surface activity under harsh conditions and that are relevant to Microbial Enhanced Oil Recovery, MEOR
    corecore