9 research outputs found

    An overview of nanoemulsion characterization via atomic force microscopy

    Get PDF
    Nanoemulsion-based systems are widely applied in food industries for protecting active ingredients against oxidation and degradation and controlling the release rate of active core ingredients under particular conditions. Visualizing the interface morphology and measuring the interfacial interaction forces of nanoemulsion droplets are essential to tailor and design intelligent nanoemulsion-based systems. Atomic force microscopy (AFM) is being established as an important technique for interface characterization, due to its unique advantages over traditional imaging and surface force-determining approaches. However, there is a gap in knowledge about the applicability of AFM in characterizing the droplet interface properties of nanoemulsions. This review aims to describe the fundamentals of the AFM technique and nanoemulsions, mainly focusing on the recent use of AFM to investigate nanoemulsion properties. In addition, by reviewing interfacial studies on emulsions in general, perspectives for the further development of AFM to study nanoemulsions are also discussed.Peer reviewe

    Modification of xylan via an oxidation-reduction reaction

    Get PDF
    Xylan is a biopolymer readily available from forest resources. Various modification methods, including oxidation with sodium periodate, have been shown to facilitate the engineering applications of xylan. However, modification procedures are often optimized for semicrystalline high molecular weight polysaccharide cellulose rather than for lower molecular weight and amorphous polysaccharide xylan. This paper elucidates the procedure for the periodate oxidation of xylan into dialdehyde xylan and its further reduction into a dialcohol form and is focused on the modification work up. The oxidation–reduction reaction decreased the molecular weight of xylan while increased the dispersity more than 50%. Unlike the unmodified xylan, all the modified grades could be solubilized in water, which we see essential for facilitating the future engineering applications of xylan. The selection of quenching and purification procedures and pH-adjustment of the reduction step had no significant effect on the degree of oxidation, molecular weight and only a minor effect on the hydrodynamic radius in water. Hence, it is possible to choose the simplest oxidation-reduction route without time consuming purification steps within the sequence.Peer reviewe

    Potential of Wood Hemicelluloses and Their Derivates as Food Ingredients

    Get PDF
    A holistic utilization of all lignocellulosic wood biomass, instead of the current approach of using only the cellulose fraction, is crucial for the efficient, ecological, and economical use of the forest resources. Use of wood constituents in the food and feed sector is a potential way of promoting the global economy. However, industrially established food products utilizing such components are still scarce, with the exception of cellulose derivatives. Hemicelluloses that include xylans and mannans are major constituents of wood. The wood hemicelluloses are structurally similar to hemicelluloses from crops, which are included in our diet, for example, as a part of dietary fibers. Hence, structurally similar wood hemicelluloses have the potential for similar uses. We review the current status and future potential of wood hemicelluloses as food ingredients. We include an inventory of the extraction routes of wood hemicelluloses, their physicochemical properties, and some of their gastrointestinal characteristics, and we also consider the regulatory route that research findings need to follow to be approved for food solutions, as well as the current status of the wood hemicellulose applications on that route.Peer reviewe

    Wood lignocellulosic stabilizers : effect of their characteristics on stability and rheological properties of emulsions

    Get PDF
    Lignocellulosic materials from the forest industry have shown potential to be used as sustainable hydrocolloids to stabilize emulsions for many applications in life science and chemical industries. However, the effect of wood species and recovery method on the product’s properties and ability to stabilize emulsions of isolated lignocellulosic compounds is not well understood. Hemicelluloses, abundant lignocellulosic side stream, exhibit differences in their water solubility, anionic character, lignin content, and degree of acetylation. Here, we explored stability and rheological properties of model emulsions (5% hexadecane and 1% stabilizer, w/w) stabilized by different grades of sprucewood galactoglucomannan (GGM) and birchwood glucuronoxylan (GX) hemicelluloses. The results were compared to known soluble, insoluble, charged, and non-charged cellulosic stabilizers, namely methyl cellulose (MC), carboxymethyl cellulose (CMC), anionic- and nonionic-cellulose nanocrystals (aCNC and dCNC). The results showed that GX emulsions were highly stable compared to GGM emulsions, and that deacetylation and lignin removal markedly reduced emulsion stability of GGM. Carboxymethylation to increase anionic characters enhanced the emulsion stabilization capacity of GGM, but not that of GX. Investigating flow behaviors of emulsions indicated that hemicelluloses primarily stabilize emulsions by adsorption of insoluble particles, as their flow behaviors were similar to those of cellulose nanocrystals rather than those of soluble celluloses. Understanding the impact of the variations in composition and properties of hemicellulose stabilizers to stabilize emulsions allows tailoring of their recovery processes to obtain desirable hydrocolloids for different applications.Peer reviewe

    Insight on current advances in food science and technology for feeding the world population

    Get PDF
    While the world population is steadily increasing, the capacity of Earth to renew its resources is continuously declining. Consequently, the bioresources required for food production are diminishing and new approaches are needed to feed the current and future global population. In the last decades, scientists have developed novel strategies to reduce food loss and waste, improve food production, and find new ingredients, design and build new food structures, and introduce digitalization in the food system. In this work, we provide a general overview on circular economy, alternative technologies for food production such as cellular agriculture, and new sources of ingredients like microalgae, insects, and wood-derived fibers. We present a summary of the whole process of food design using creative problem-solving that fosters food innovation, and digitalization in the food sector such as artificial intelligence, augmented and virtual reality, and blockchain technology. Finally, we briefly discuss the effect of COVID-19 on the food system. This review has been written for a broad audience, covering a wide spectrum and giving insights on the most recent advances in the food science and technology area, presenting examples from both academic and industrial sides, in terms of concepts, technologies, and tools which will possibly help the world to achieve food security in the next 30 years.Peer reviewe

    Potential of Wood Hemicelluloses and Their Derivates as Food Ingredients

    No full text
    Funding Information: We thank the Nordic Council of Ministers for funding a joint Nordic project (SNS Hemisurf 127) in which framework this Review was drafted. T.N. and C.P. thank the Swedish Research Council grant (registration number 2017-05138), the Wallenberg Wood Science Center, and the Materials Science Area of Advance at Chalmers for funding. B.W. and S.L. appreciate funding from Norwegian research council grants 295501, 296083, and 244259. F.A. and K.S.M. acknowledge funding from the Academy of Finland 322514. Publisher Copyright: © 2023 The Authors. Published by American Chemical Society.A holistic utilization of all lignocellulosic wood biomass, instead of the current approach of using only the cellulose fraction, is crucial for the efficient, ecological, and economical use of the forest resources. Use of wood constituents in the food and feed sector is a potential way of promoting the global economy. However, industrially established food products utilizing such components are still scarce, with the exception of cellulose derivatives. Hemicelluloses that include xylans and mannans are major constituents of wood. The wood hemicelluloses are structurally similar to hemicelluloses from crops, which are included in our diet, for example, as a part of dietary fibers. Hence, structurally similar wood hemicelluloses have the potential for similar uses. We review the current status and future potential of wood hemicelluloses as food ingredients. We include an inventory of the extraction routes of wood hemicelluloses, their physicochemical properties, and some of their gastrointestinal characteristics, and we also consider the regulatory route that research findings need to follow to be approved for food solutions, as well as the current status of the wood hemicellulose applications on that route.Peer reviewe

    Effects of pH and temperature of ultrafiltration on the composition and physicochemical properties of hot-water-extracted softwood galactoglucomannans

    Get PDF
    The recovery of softwood galactoglucomannans (GGM) by pressurized hot water extraction and further con-centration by membrane filtration followed by spray drying yield biopolymers suitable as raw materials for renewable products. GGM are often characterized as having low viscosity in water and excellent emulsion sta-bilizing capacity, enhanced by lignin structures co-extracted with GGM. To reduce membrane fouling during filtration and subsequently to increase product yield, the pH and temperature of GGM liquor can be increased, but effects of such conditions on properties of recovered GGM have not been well understood. Herein, we sys-tematically varied the ultrafiltration pH (6-10) and temperature (30-60 degrees C) and characterized the composition and physicochemical properties of spray-dried GGM powders in comparison with freeze-dried (fGGM) and ethanol precipitated GGM (eGGM). The GGM samples ultrafiltrated at 60 degrees C and pH 10 (GGM-10/60) showed lower molar mass (2200 Da), degree of acetylation (0.09) and absolute zeta-potential (13 mV) than the other ultrafiltrated samples at pH (6-10) and temperature (30-45 degrees C) (3200-3700 Da, 0.11-0.15 and 23-32 mV, respectively). These differences could explain the unique gel formation capacity of GGM-10/60 after ultra-sonication, which opens new prospects in GGM applications such as thickening agents or in 3D printing. The present results allow the design of biorefinery processes to obtain GGM with desirable properties for specific applications.Peer reviewe

    Wood lignocellulosic stabilizers : effect of their characteristics on stability and rheological properties of emulsions

    Get PDF
    Lignocellulosic materials from the forest industry have shown potential to be used as sustainable hydrocolloids to stabilize emulsions for many applications in life science and chemical industries. However, the effect of wood species and recovery method on the product’s properties and ability to stabilize emulsions of isolated lignocellulosic compounds is not well understood. Hemicelluloses, abundant lignocellulosic side stream, exhibit differences in their water solubility, anionic character, lignin content, and degree of acetylation. Here, we explored stability and rheological properties of model emulsions (5% hexadecane and 1% stabilizer, w/w) stabilized by different grades of sprucewood galactoglucomannan (GGM) and birchwood glucuronoxylan (GX) hemicelluloses. The results were compared to known soluble, insoluble, charged, and non-charged cellulosic stabilizers, namely methyl cellulose (MC), carboxymethyl cellulose (CMC), anionic- and nonionic-cellulose nanocrystals (aCNC and dCNC). The results showed that GX emulsions were highly stable compared to GGM emulsions, and that deacetylation and lignin removal markedly reduced emulsion stability of GGM. Carboxymethylation to increase anionic characters enhanced the emulsion stabilization capacity of GGM, but not that of GX. Investigating flow behaviors of emulsions indicated that hemicelluloses primarily stabilize emulsions by adsorption of insoluble particles, as their flow behaviors were similar to those of cellulose nanocrystals rather than those of soluble celluloses. Understanding the impact of the variations in composition and properties of hemicellulose stabilizers to stabilize emulsions allows tailoring of their recovery processes to obtain desirable hydrocolloids for different applications.Peer reviewe

    Effects of pH and temperature of ultrafiltration on the composition and  physicochemical properties of hot-water-extracted  softwood galactoglucomannans

    No full text
    The recovery of softwood galactoglucomannans (GGM) by pressurized hot water extraction and further concentration by membrane filtration followed by spray drying yield biopolymers suitable as raw materials for renewable products. GGM are often characterized as having low viscosity in water and excellent emulsion stabilizing capacity, enhanced by lignin structures co-extracted with GGM. To reduce membrane fouling during filtration and subsequently to increase product yield, the pH and temperature of GGM liquor can be increased, but effects of such conditions on properties of recovered GGM have not been well understood. Herein, we systematically varied the ultrafiltration pH (6− 10) and temperature (30–60 ◦C) and characterized the composition and physicochemical properties of spray-dried GGM powders in comparison with freeze-dried (fGGM) and ethanol precipitated GGM (eGGM). The GGM samples ultrafiltrated at 60 ◦C and pH 10 (GGM-10/60) showed lower molar mass (2200 Da), degree of acetylation (0.09) and absolute ζ-potential (13 mV) than the other ultrafiltrated samples at pH (6− 10) and temperature (30–45 ◦C) (3200–3700 Da, 0.11–0.15 and 23–32 mV, respectively). These differences could explain the unique gel formation capacity of GGM-10/60 after ultrasonication, which opens new prospects in GGM applications such as thickening agents or in 3D printing. The present results allow the design of biorefinery processes to obtain GGM with desirable properties for specific applications.</p
    corecore