66 research outputs found

    Protein Delivery of an Artificial Transcription Factor Restores Widespread Ube3a Expression in an Angelman Syndrome Mouse Brain.

    Get PDF
    Angelman syndrome (AS) is a neurological genetic disorder caused by loss of expression of the maternal copy of UBE3A in the brain. Due to brain-specific genetic imprinting at this locus, the paternal UBE3A is silenced by a long antisense transcript. Inhibition of the antisense transcript could lead to unsilencing of paternal UBE3A, thus providing a therapeutic approach for AS. However, widespread delivery of gene regulators to the brain remains challenging. Here, we report an engineered zinc finger-based artificial transcription factor (ATF) that, when injected i.p. or s.c., crossed the blood-brain barrier and increased Ube3a expression in the brain of an adult mouse model of AS. The factor displayed widespread distribution throughout the brain. Immunohistochemistry of both the hippocampus and cerebellum revealed an increase in Ube3a upon treatment. An ATF containing an alternative DNA-binding domain did not activate Ube3a. We believe this to be the first report of an injectable engineered zinc finger protein that can cause widespread activation of an endogenous gene in the brain. These observations have important implications for the study and treatment of AS and other neurological disorders

    Updating Photon-Based Normal Tissue Complication Probability Models for Pneumonitis in Patients With Lung Cancer Treated With Proton Beam Therapy

    Get PDF
    Purpose: No validated models for predicting the risk of radiation pneumonitis (RP) with proton beam therapy (PBT) currently exist. Our goal was to externally validate and recalibrate multiple established photon-based normal tissue complication probability models for RP in a cohort with locally advanced nonsmall cell lung cancer treated with contemporary doses of chemoradiation using PBT. Methods and Materials: The external validation cohort consisted of 99 consecutive patients with locally advanced nonsmall cell lung cancer treated with chemoradiation using PBT. RP was retrospectively scored at 3 and 6 months posttreatment. We evaluated the performance of the photon Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) pneumonitis model, the QUANTEC model adjusted for clinical risk factors, and the newer Netherlands updated QUANTEC model. A closed testing procedure was performed to test the need for model updating, either by recalibration-in-the-large (re-estimation of intercept), recalibration (re-estimation of intercept/slope), or model revision (re-estimation of all coefficients). Results: There were 21 events (21%) of ≥grade 2 RP. The closed testing procedure on the PBT data set did not detect major deviations between the models and the data and recommended adjustment of the intercept only for the photon-based Netherlands updated QUANTEC model (intercept update: –1.2). However, an update of the slope and revision of the model coefficients were not recommended by the closed testing procedure, as the deviations were not significant within the power of the data. Conclusions: The similarity between the dose-response relationship for PBT and photons for normal tissue complications has been an assumption until now. We demonstrate that the preexisting, widely used photon based models fit our PBT data well with minor modifications. These now-validated and updated normal tissue complication probability models can aid in individualizing selection of the most optimal treatment technique for a particular patient

    Empiric Radiotherapy for Lung Cancer Collaborative Group multi-institutional evidence-based guidelines for the use of empiric stereotactic body radiation therapy for non-small cell lung cancer without pathologic confirmation

    Get PDF
    The standard of care for managing early stage non-small cell lung cancer (NSCLC) is definitive surgical resection. Stereotactic body radiation therapy (SBRT) has become the standard treatment for patient who are medically inoperable, and it is increasingly being considered as an option in operable patients. With the growing use of screening thoracic CT scans for patients with a history of heavy smoking, as well as improved imaging capabilities, the discovery of small lung nodes has become a common dilemma. As a result, clinicians are increasingly faced with managing lung nodules in patients in whom diagnostic biopsy is not safe or feasible. Herein, we describe the scope of the problem, tools available for predicting the probability that a lung nodule is a malignancy, staging procedures, benefits of pathology-proven and empiric SBRT, considerations of safety based on location of the lesion of concern, and overall efficacy of SBRT

    Heteroresistance to the model antimicrobial peptide polymyxin B in the emerging Neisseria meningitidis lineage 11.2 urethritis clade: mutations in the pilMNOPQ operon

    Get PDF
    Clusters of Neisseria meningitidis (Nm) urethritis among primarily heterosexual males in multiple US cities have been attributed to a unique non‐encapsulated meningococcal clade (the US Nm urethritis clade, US_NmUC) within the hypervirulent clonal complex 11. Resistance to antimicrobial peptides (AMPs) is a key feature of urogenital pathogenesis of the closely related species, Neisseria gonorrhoeae. The US_NmUC isolates were found to be highly resistant to the model AMP, polymyxin B (PmB, MICs 64–256 µg ml–1). The isolates also demonstrated stable subpopulations of heteroresistant colonies that showed near total resistant to PmB (MICs 384–1024 µg ml–1) and colistin (MIC 256 µg ml–1) as well as enhanced LL‐37 resistance. This is the first observation of heteroresistance in N. meningitidis. Consistent with previous findings, overall PmB resistance in US_NmUC isolates was due to active Mtr efflux and LptA‐mediated lipid A modification. However, whole genome sequencing, variant analyses and directed mutagenesis revealed that the heteroresistance phenotypes and very high‐level AMP resistance were the result of point mutations and IS1655 element movement in the pilMNOPQ operon, encoding the type IV pilin biogenesis apparatus. Cross‐resistance to other classes of antibiotics was also observed in the heteroresistant colonies. High‐level resistance to AMPs may contribute to the pathogenesis of US_NmUC

    Reduced Diversity and High Sponge Abundance on a Sedimented Indo-Pacific Reef System: Implications for Future Changes in Environmental Quality

    Get PDF
    Although coral reef health across the globe is declining as a result of anthropogenic impacts, relatively little is known of how environmental variability influences reef organisms other than corals and fish. Sponges are an important component of coral reef fauna that perform many important functional roles and changes in their abundance and diversity as a result of environmental change has the potential to affect overall reef ecosystem functioning. In this study, we examined patterns of sponge biodiversity and abundance across a range of environments to assess the potential key drivers of differences in benthic community structure. We found that sponge assemblages were significantly different across the study sites, but were dominated by one species Lamellodysidea herbacea (42% of all sponges patches recorded) and that the differential rate of sediment deposition was the most important variable driving differences in abundance patterns. Lamellodysidea herbacea abundance was positively associated with sedimentation rates, while total sponge abundance excluding Lamellodysidea herbacea was negatively associated with rates of sedimentation. Overall variation in sponge assemblage composition was correlated with a number of variables although each variable explained only a small amount of the overall variation. Although sponge abundance remained similar across environments, diversity was negatively affected by sedimentation, with the most sedimented sites being dominated by a single sponge species. Our study shows how some sponge species are able to tolerate high levels of sediment and that any transition of coral reefs to more sedimented states may result in a shift to a low diversity sponge dominated system, which is likely to have subsequent effects on ecosystem functioning. © 2014 Powell et al

    Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    No full text
    Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT), through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC), as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning
    corecore