127 research outputs found

    Sliding mode control for high-precision motion of a piezostage

    Get PDF
    In this paper, control of piezostage using sliding mode control (SMC) method is presented. Due to the fast dynamics of piezostage and since high accuracy is required the special attention is paid to avoid chattering. The presence of hysteresis characteristics represents main nonlinearity in the system. Structure of proposed SMC controller is proven to offer chattering-free motion and rejection of the disturbances represented by hysteresis and the time variation of the piezostack parameters. In order to enhance the accuracy of the closed loop system, a combination of disturbance rejection method and the SMC controller is explored and its effectiveness is experimentally demonstrated. The disturbance observer is constructed using a second-order lumped parameter model of the piezostage and is based on SMC framework. Closed-loop experiments are presented using proportional-integral-derivative controller and sliding mode controller with disturbance compensation for the purpose of comparison

    Experimental investigation of a SMC high precision control

    Get PDF
    In this paper a discrete-time Sliding-Mode (SM) based controller for high accuracy position control is investigated. The controller is designed for a general SISO system with nonlinearity and external disturbance. It will be shown that application of the proposed controller forces the state trajectory to be within an O(Ts 2). The proposed controller is applied to a stage driven by a piezo drive that is known to suffer from nonlinearity. As a separate idea to enhance the accuracy of the closed loop system a combination of disturbance rejection method and the SMC controller is explored and its effectiveness is experimentally demonstrated. Closed-loop experiments are presented using PID controller with and without disturbance compensation and Sliding-Mode Controller with and without disturbance compensation for the purpose of comparison

    Sliding mode based piezoelectric actuator control

    Get PDF
    In this paper a control of method for a piezoelectric stack actuator control is proposed. In addition briefly the usage of the same methods for estimation of external force acting to the actuator in contact with environment is discussed. The method uses sliding mode framework to design both the observer and the controller based on an electromechanical lumped model of the piezoelectric actuator. Furthermore, using a nonlinear differential equation the internal hysteresis disturbance is removed from the total disturbance in an attempt to estimate the external force acting on the actuator. It is then possible to use this external force estimate as a means of force control of the actuator. Simulation and experiments are compared for validating the disturbance and external force estimation technique. Some experiments that incorporate disturbance compensation in a closed-loop SMC control algorithm are also presented to prove the effectiveness of this method in producing high precision motion

    Evaluation of error bound for a DT sliding mode control with disturbance observer

    Get PDF
    In this paper an estimate of the upper bound of control error for discrete-time implementation of a Sliding Mode Control (DTSMC) combined with disturbance observer is investigated. Having in mind application to PZT high bandwidth actuators and since high accuracy is required the special attention is paid to avoid chattering. Selected structure of proposed SMC controller is proven to offer chattering-free motion. The proposed structure also avoids deadbeat poles that are the cause of large control action which is not desirable in practical applications. The proposed scheme is shown to allow a maximum error bound of O(T) for the system with disturbance. The main disturbances are represented by hysteresis and the time variation of the piezo stack parameters. The evaluation of the upper bound of error in such a system is shown and experimentally verified. Closed-loop experiments are presented using the proposed method to verify the theoretical results

    Sliding mode control based piezoelectric actuator control

    Get PDF
    In this paper a method for piezoelectric stack actuator control is proposed. In addition a brief discussion about the usage of the same methods for estimation of external force acting to the actuator in contact with environment is made. The method uses sliding mode framework to design both the observer and the controller based on an electromechanical lumped model of the piezoelectric actuator. Furthermore, using a nonlinear differential equation the internal hysteresis disturbance is removed from the total disturbance in an attempt to estimate the external force acting on the actuator. It is then possible to use this external force estimate as a means of force control of the actuator. Simulation and experiments are compared for validating the disturbance and external force estimation technique. Some experiments that incorporate disturbance compensation in a closed-loop SMC control algorithm are also presented to prove the effectiveness of this method in producing high precision motion

    A study on high accuracy discrete-time sliding mode control

    Get PDF
    In this paper a Discrete-Time Sliding-Mode based controller design for high accuracy motion control systems is presented. The controller is designed for a general SISO system with nonlinearity and external disturbance. Closed-Loop behavior of the general system with the proposed control and Lyapunov stability is shown and the error of the closed loop system is proven to be within an o(T2). The proposed controller is applied to a stage driven by a piezo drive that is known to suffer from hysteresis nonlinearity in the control gain. Proposed SMC controller is proven to offer chattering-free motion and rejection of the disturbances represented by hysteresis and the time variation of the piezo drive parameters. As a separate idea to enhance the accuracy of the closed loop system a combination of disturbance rejection method and the SMC controller is explored and its effectiveness is experimentally demonstrated. Closed-loop experiments are presented using PID controller with and without disturbance compensation and Sliding-Mode Controller with and without disturbance compensation for the purpose of comparison

    Sliding-mode neuro-controller for uncertain systems

    Get PDF
    In this paper, a method that allows for the merger of the good features of sliding-mode control and neural network (NN) design is presented. Design is performed by applying an NN to minimize the cost function that is selected to depend on the distance from the sliding-mode manifold, thus providing that the NN controller enforces sliding-mode motion in a closed-loop system. It has been proven that the selected cost function has no local minima in controller parameter space, so under certain conditions, selection of the NN weights guarantees that the global minimum is reached, and then the sliding-mode conditions are satisfied; thus, closed-loop motion is robust against parameter changes and disturbances. For controller design, the system states and the nominal value of the control input matrix are used. The design for both multiple-input-multiple-output and single-input-single-output systems is discussed. Due to the structure of the (M)ADALINE network used in control calculation, the proposed algorithm can also be interpreted as a sliding-mode-based control parameter adaptation scheme. The controller performance is verified by experimental results

    Sliding-Mode control for high-precision motion control systems

    Get PDF
    In many of today's mechanical systems, high precision motion has become a necessity. As performance requirements become more stringent, classical industrial controllers such as PID can no longer provide satisfactory results. Although many control approaches have been proposed in the literature, control problems related to plant parameter uncertainties, disturbances and high-order dynamics remain as big challenges for control engineers. Theory of Sliding Mode Control provides a systematic approach to controller design while allowing stability in the presence of parametric uncertainties and external disturbances. In this thesis a brief study of the concepts behind Sliding Mode Control will be shown. Description of Sliding Mode Control in discrete-time systems and the continuous Sliding Mode Control will be shown. The description will be supported with the design and robustness analysis of Sliding Mode Control for discrete-time systems. In this thesis a simplified methodology based on discrete-time Sliding Mode Control will be presented. The main issues that this thesis aims to solve are friction and internal nonlinearities. The thesis can be outlined as follows: -Implementation of discrete-time Sliding Mode Control to systems with nonlinearities and friction. Systems include; piezoelectric actuators that are known to suffer from nonlinear hysteresis behavior and ball-screw drives that suffer from high friction. Finally, the controller will be implemented on a 6-dof Stewart platform which is a system of higher complexity. -It will also be shown that performance can be enhanced with the aid of disturbance compensation based on a nominal plant disturbance observer

    Fatal elizabethkingia meningoseptica cholangitis following biliary stent placement

    Get PDF
    Elizabethkingia (E.) meningosepticais a ubiquitous gram-negative bacillus belonging to the genus Chryseobacteriumand has been reported to cause nosocomial infections in both the immunocompromised and immunocompetent patients. E. meningoseptica can colonize the biliary tree after endoscopic procedures; and cholangitis, caused by this organism, is associated with a favorable prognosis. Here, we report a fatal case of cholangitis secondary to E. meningoseptica that developed following biliary stent placement. This case suggests that E. meningoseptica can be a cause of potentially fatal biliary tract infections in patients who undergo biliary tract endoscopic procedures. Clinicians must not disregard this organism as a contaminant (or colonizer) as a delay in diagnosis and treatment can lead to a fatal outcome, as seen in this case
    corecore