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Abstract—In this paper a Discrete-Time Sliding-Mode 
based controller design for high accuracy motion 
control systems is presented. The controller is 
designed for a general SISO system with nonlinearity 
and external disturbance. Closed-Loop behavior of 
the general system with the proposed control and 
Lyapunov stability is shown and the error of the 
closed loop system is proven to be within an o(T2). The 
proposed controller is applied to a stage driven by a 
piezo drive that is known to suffer from hysteresis 
nonlinearity in the control gain.  Proposed SMC 
controller is proven to offer chattering-free motion 
and rejection of the disturbances represented by 
hysteresis and the time variation of the piezo drive 
parameters. As a separate idea to enhance the 
accuracy of the closed loop system a combination of 
disturbance rejection method and the SMC controller 
is explored and its effectiveness is experimentally 
demonstrated. Closed-loop experiments are presented 
using PID controller with and without disturbance 
compensation and Sliding-Mode Controller with and 
without disturbance compensation for the purpose of 
comparison.

I. INTRODUCTION

Piezoelectric actuators have shown a great potential in 
applications that require submicrometer down to 
nanometer motion. The advantages that piezoelectric 
actuators offer are the absence of friction and stiction 
characteristics that exist in other actuators. Thus, 
piezoelectric actuators are ideal for very high-precision 
motion applications. The main characteristics of 
piezoelectric actuators are: extremely high resolution in 
the nanometer range, high bandwidth up to several kilo 
hertz range, a large force up to few tons, and very short 
travel in the submillimeter range [l]. In all of applications 
the accuracy of positioning is very important and in many 
cases the closed loop control is the only answer. Despite 
this there are many attempts [2], [3] to drive piezoelectric 
actuators as an open loop system with fine compensation 
of the hysteresis nonlinearity in one or another way.  

Despite the fact that a piezoelectric actuator is a 
distributed parameters system, modeling for control 
purposes is based on a lumped parameters system. It is 
possible to drive piezoelectric actuators with either 
voltage or charge as input. A piezoelectric actuator driven 
by voltage as input will exhibit nonlinearity between the 
input (voltage) and output (position). This nonlinearity is 
mainly due to the parasitic hysteresis characteristics of 

piezoelectric crystals. It has been shown in many other 
works [2] that hysteresis behavior does not exist in the 
case of a piezoelectric actuator driven by charge and that 
the actuator exhibits almost linear behavior between 
charge and position. A major difficulty in using piezo-
electric actuators is the hysteresis effect which causes 
large positioning errors. There are many techniques used 
in order to handle the nonlinearities brought by this effect 
such as feedback and model-based feedforward control. 
Also in [4], iterative method is used in order to find the 
hysteresis that compensates feedforward input for high-
precision positioning. In [5], both the hysteresis and 
dynamic creep effects are given importance and operator 
based inverse feedforward controller is applied. It has 
been shown that this controller works well for highly 
dynamic operation and that it is simple and inexpensive 
for mechatronic devices with hysteresis characteristics. 
There has been also research on the mathematical 
modeling of hysteresis, such as in [2], [3], [6], [7] and [8] 
where new results for the modeling of physical hysteresis 
and its applications in dynamic research are shown. In [2] 
complex and accurate model of hysteresis is presented, but 
is hard to implement and too complex for control 
applications. In [3], [6], and [7] simpler models of 
hysteresis are proposed, however, those models fail to 
precisely represent hysteresis behavior throughout the 
whole range of input voltage of the piezoelectric actuator. 

In this paper the sliding mode methods are applied in 
the design of a high-accuracy piezo actuator position. The 
solution proposed here combines the sliding mode 
controller and the disturbance rejection method in order to 
achieve high accuracy in the actuator trajectory tracking. 
For the disturbance estimation a sliding mode observer 
based disturbance compensation method is used here. By 
manipulating model of a piezo actuator in a form where 
nonlinearities due to hysteresis are presented as an 
additive disturbance acting together with external force to 
the mechanical system a simple second order observer is 
designed to estimate lumped disturbance. 

As a final extension of the work, a disturbance observer 
based on the lumped parameter model of the piezo-stage 
proposed in, [2], will be experimentally shown to improve 
the overall performance of the closed-loop system. 

II. CONTROLLER DESIGN AND ANALYSIS

A. Controller Design 
Consider the general system defined below  

Buxfx += )( (1) 
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Here, it is assumed that f and B are smooth, continuous 
and bounded. The aim is to drive the states of the system 
into the set S defined by 

( ){ }0),(: ==−= rr xxxxGxS σ  (2) 

Here G is a positive constant, x is the state vector, xr is 
the reference vector and it will be assumed to be smooth 
and continuous, and ),( rxxσ is the function defining the 
sliding mode manifold.  

The derivation of the control law starts with the 
selection of the Lyapunov function, )(σV , and an 
appropriate form of the derivative of the Lyapunov 
function, )(σV . Lyapunov function selection such that it 
is positive definite 

2
)(

2σσ =V (3) 

Hence the derivative of the Lyapunov function is 

σσσ =)(V  (4) 

In order to guaranty the asymptotic stability of 
solution 0),( =rxxσ , the derivative of the Lyapunov 
function is selected to be 

( )σσζσ DV −=)( (5) 

Here D is a positive constant and ( )σζ  should be 
selected such that the sliding mode motion on manifold 

0),( =rxxσ  is gurantied and that reaching time to the 
manifold is finite. Selecting (5) in the form 

( ) 0;/)( 2 >−=−−= ησσζσησσσ DDDV  guaranty 
required condition where η can be selected as a small 
positive constant. Hence, if control can be determined 
from (4) and (5), the stability of the solution (5) will be 
guaranteed since 0)( >σV , 0)0( =V  and ( ) 0<σV ,

( ) 00 =V . By combining (4) and (5) the following result is 
obtained 

( )( ) 0=+ σζσσ D (6) 

A solution for (6) is as follows 

( ) 0=+ σζσ D (7) 

The derivative of the sliding function is as follows 

( ) xGxGxxG rr −=−=σ  (8) 

From (8) and using (1) 

( ))()( tuuGBtGBuGfxG eq
GBu

r

eq

−=−−=σ
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If (9) is inserted in (7) and the result is solved for the 
control 

( ) ( )σζDGButu eq
1)( −+= (10) 

It can be seen from (9) that ueq is difficult to calculate. 
Using the fact that ueq is a continuous function since it is a 
function of xr and f that are assumed smooth and 
continuous, (9) can be written in discrete-time form after 
applying Euler’s approximation, 

( ))()(
)())1((

sseq
s

ss kTukTuGB
T

kTTk
−=

−+ σσ
(11) 

Here Ts is the sampling time and +∈ Zk . It is also 
necessary to write (10) in discrete-time form just as it was 
done before 

( ) ( ))()()( 1
sseqs kTDGBkTukTu σζ−+= (12) 

If (11) is solved for the equivalent control, the following 
is obtained 

( ) −+
+= −
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(13) 

Since the system is causal, and control cannot be 
dependent on a future value of , the only way to estimate 
the current value of the equivalent control is by 
approximating by a single-step backward value computed 
from (14) as follows, 

( ) −
+=≅ −−

−−
s

kk
kkeqkeq T

GBuuu 11
11

ˆ σσ
(14) 

Here
keqû (or )(ˆ seq kTu ) is the estimate of the current 

value of the equivalent control. If (14) is inserted in (12) 

( ) ( ) −
++= −−

−
s

kk
kkk T

DGBuu 11
1

σσσζ (15) 

It easily seen that the above control law is derived from 
discrete-time approximations based on the continuous-
time equations. Hence, it must be shown that the above 
control satisfies the original conditions based on which it 
was designed. These conditions are the Lyapunov 
condition and existence of Sliding Mode.  
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B. Closed-Loop Behavior with the Approximated 
Control 

As a consequence of the approximations that were 
made in the derivation of the discrete-time control law 
some deviations in the sliding surface from the desired 
sliding manifold may exist. This deviation of the sliding 
surface from the desired manifold at each sampling instant 
will be analyzed. Analysis of the inter-sampling behavior 
of the sliding surface will also be analyzed.  Considering 
(1), the derivative of the sliding surface is given by 

( ) )()( tGBuGfxGxxGt rr −−=−=σ  (16) 

The discrete-time equivalent of the sliding manifold can 
be obtained by taking the integral on both sides of (16) 
from kTs to sTk )1( +

( )dttGBuGfxG
s
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Applying a sample and hold to the control input between 
consecutive samples kutu =)( for ss TktkT )1( +<≤

( ) ks

Tk

kT

r
kk GBuTdtGfxG
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+
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Using the assumptions that rx and f are smooth and 
bounded, the integrations in (18) can be approximated by 
using Euler’s integration

( ) )( 2
1 sksk

r
kskk TOGBuTfxGT +−−+=+ σσ (19) 

Here O(Ts
2) is the error introduced due to Euler’s 

integration, [3]. If the control defined by (15) is 
introduced into (19) 

( )k
r
kskk fxGT −+=+ σσ 1

          
)( 2

11 skkksks TODTGBuT ++−−− −− σσσ
(20) 

After some simplifications (20) is reduced to 

( ) 11 −+ −−= ksk
r
ksk GBuTfxGTσ

                       )( 2
1 skks TODT ++− −σσ

(21) 

If ( )11 −− − k
r
ks fxGT  is added and subtracted from the r.h.s 

of (21), the following is obtained  
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After some simplifications, (22) becomes 

( ) )( 2
1 sk

r
kskskk TOfxGTDT +∆−∆+−=+ σσσ (23) 

Here r
k

r
k

r
k xxx 1−−=∆ and 1−−=∆ kkk fff . Note that if 

sTD 1= , then the r.h.s of (23) is of order O(Ts
2), 

keeping in mind that rx and f are smooth and continuous. 
Hence, 

)( 2
1 sk TO=+σ (24) 

Hence, it is shown that the maximum deviation from the 
sliding surface at each sampling instant is of order O(Ts

2).
Next, it will be shown that the inter-sampling deviation of 
the sliding surface from the desired manifold is also of 
order O(Ts

2).  
Consider the inter-sampling instant of τ+= skTt  where 

sT≤≤ τ0 . If (16) is integrated on both sides from kTs to 
τ+skT

( )dttGBuGfxGkT
s

s
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r
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Applying the sample and hold to the control and Euler’s 
integration to the remaining integral gives 

( ) )()( 2τττστσ OGBufxGkT kk
r
kks +−−+=+  (26) 

If the control defined by (15) is introduced into (26) 
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If ( )11 −− − k
r
k fxGτ  is added and subtracted from the r.h.s 

of (21) and sTD 1= , the following is obtained  
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Further simplifications lead to 
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If rx and f are smooth and continuous then  

)()( 2τστστσ O
T

kT k
s

ks +−=+ (30) 

Note that if )( 2
sk TO=σ as was shown previously then 

the maximum intersampling value of the sliding function 
is O(Ts

2). Hence, 

)()( 2
ss TOkT =+ τσ (31) 

C.  Lyapunov Stability Analysis of the Closed-Loop 
System 

In this section it will be shown that with discrete-time 
control defined by (15) it is possible to satisfy the 
Lyapunov conditions (4) and (5) in discrete-time.  

Starting with the definition of the Lyapunov function in 
discrete-time 

2
kkV σ=  (32) 

The difference of two consecutive values of the 
Lyapunov function in discrete-time can be given by 

22
11 kkkk VV σσ −=− ++  (33) 

Here it is required that 01 <−+ kk VV for 0≠kσ .
However, it will be shown that 01 <−+ kk VV  for 

)( 2
sk TO>σ . The condition 01 <−+ kk VV  means that 

022
1 <−+ kk σσ  (34) 

If (24) is inserted into (34), 

24
1 )( kskk TOVV σ−=−+  (35) 

Note that if )( 2
sk TO>σ then 01 <−+ kk VV . Thus, 

(35) shows that k is always converging towards a 
boundary of O(Ts

2) around the desired sliding-manifold 
and (31) shows that once k reaches O(Ts

2) boundary it 
will tend to stay in that boundary.

III. IMPLEMENTATION ON A PIEZO-STAGE

In this work a piezo-stage that consists of a piezo-drive 
integrated with a sophisticated flexure structure for motion 
amplification is used. The flexure structure is wire-EDM-
cut and is designed to have zero stiction and friction. 
Figure 1 shows the piezo-drive integrated flexure 

structure. In addition to the absence of internal friction, 
flexure stages exhibit high stiffness and high load 
capacity. Flexure stages are also insensitive to shock and 
vibration. However, since the piezo-drive exhibits non-
linear hysteresis behavior, the overall system will also 
exhibit the same behavior. 

The dynamics of the piezo-stage can be represented by 
the following second-order differential equation coupled 
with hysteresis in the presence of external forces 

( ) exteffeffeff FuyhtuTykycym −−=++ ),()( (36) 

Here meff denotes the effective mass of the stage, y
denotes the displacement of the stage, ceff denotes the 
effective damping of the stage, keff denotes the effective 
stiffness of the stage, T denotes the electromechanical 
transformation ratio, u denotes the input voltage and h(y,u)
denotes the non-linear hysteresis that has been found to be 
a function of y and u, [1], and Fext is the external force 
acting on the stage.   

The structure of model (36) is showing that, from the 
mechanical motion the hysteresis may be perceived as a 
disturbance force that satisfy matching conditions. This 
means that the sliding mode based control should be able 
to reject the influence of the hysteresis nonlinearity on the 
mechanical motion. At the same time it is obvious that the 
lumped disturbance consisting of the external force acting 
on the system and the hysteresis can be estimated, thus 
allowing the application of the disturbance rejection 
method in the overall system design. 

Fig. 1. Structure of a flexure piezo-stage 

To facilitate the writing of the control law, (36) is written 
into the state-space form 

21 xyx ==

eff

tex

effeffeff

eff

eff

eff

m
F

uyh
m

Tu
m
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m
c

x
m
k

yx −−+−−== ),(212
(39) 

From here it can be seen that the input matrix is 

T

effm
TB = 0 (40) 

The matrix G for this case will be selected to be 

{ }1λ=G (41) 

Piezo-drive 

y
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Here  is a positive constant. Hence, the controller will be 
in the following form 

( ) −
++= −

−
s

kk
k

eff
kk T

D
T

m
uu 1

1
σσσζ (42) 

The results that it will be shown in this section are for the 
case of SMC and for comparison purposes PID results 
will also be shown. Figures 2 and 3 depict the tracking of 
the piezo-stage for a 0.25Hz sinusoidal reference. 

IV. DISTURBANCE OBSERVER

A.  Design and Analysis of the Disturbance Observer 
The structure of the observer is based on (36) under the 

assumption that all the plant parameter uncertainties, 
nonlinearities and external disturbances can be 
represented as a lumped disturbance. As it is obvious, y is 
the displacement of the plant and is measurable. Likewise, 
u(t) is the input to the plant and is also measurable. Hence, 
the nominal structure of the plant is defined as follows 

dNNNN FtuTykycym −=++ )(
( ) kyycymvvThTF hinNd ∆+∆+∆++∆+=

(43) 

Here mN, cN, kN and TN are the nominal plant parameters 
while m, c, k and T are the uncertainties of the plant 
parameters. Since y and u(t) are measured the proposed 
observer is of the following form 

cNNNNN uTuTykycym −=++ ˆˆˆ (44) 

Here ŷ  is the estimated position u is the plant control 
input and uc is the observer control input. If ŷ can be 
forced to track y then obviously cNd uTF = . The observer 
controller that is used is in the SMC framework. Selecting 
the following sliding manifold 

( ) ( )yyyyobsobs ˆˆ −+−= λσ (45) 

here obs is a positive constant. If obs is forced to zero 
then ŷ  is forced to track y. The controller used is 

( ) −
++= −

−
s

obsobs
obsobs

eff
cc T

D
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m
uu kk

kkk

1

1

σσ
σζ (46) 

The frequency response of the disturbance observer 
output with respect to the disturbance is depicted in the 
Fig. 4. The response shown is for the case when the 
sampling time is 100 s and the controller parameters 
being sobsobs TD 1== λ .

Fig. 2. Sinusoidal reference tracking with SMC 

Fig. 3. Sinusoidal reference tracking with PID controller 

Fig. 4. Magnitude and Phase Plots of the Observer Response 
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B. Closed-Loop Experiments with Disturbance    
Compensation 

The disturbance observer shown above was 
implemented with closed-loop control. The observer 
implementation is depicted in the Fig. 5. The experiments 
show a notable improvement in tracking for the cases of 
Sliding mode controller and PID controller.  

Fig. 5. Closed-Loop control with disturbance compensation

Fig. 6. Sinusoidal reference tracking with the SMC and disturbance 
compensation 

Fig. 7. Sinusoidal reference tracking with PID and disturbance 
compensation

5. CONCLUSION

In this paper the robustness of a designed discrete-time 
Sliding mode controller was shown. It was also shown 
that the controller can push the states of the system to an 
O(Ts

2) boundary around the desired sliding manifold. 
Experiments were also conducted to show the 
effectiveness of the controller. As an extension, it was 
shown that the inclusion of disturbance compensation via 
disturbance observer can improve the overall closed-loop 
system. 
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