7 research outputs found

    Jatropha curcas L. and Pongamia pinnata L. exhibited differential growth and bioaccumulation pattern irrigated with wastewater

    Get PDF
    Pakistan currently faces an acute shortage of water, which has increasingly been devastating for the past few decades. In order to mitigate water scarcity, agriculture sector of the country started using wastewater discharged from various industries. The present study aims to assess the impact of fertilizer industry effluent on Jatropha curcas L. and Pongamia pinnata L., which are popular biofuel tree species. Initially, one-year-old saplings were acclimatized in pots, then wastewater was applied in diluted concentrations of effluent using 20 and 40 mL L-1 to the treatment group while control plants were irrigated with tap water. The physico-chemical properties of the effluent showed high values 179 mg L-1 for biological oxygen demand (BOD), 257 mg L-1 for chemical oxygen demand (COD) and 1200 mg L-1 for total dissolved solid (TDS), respectively. Surprisingly, high concentrations of arsenic (15 ”g L-1) and cadmium (0.78 mg L-1) were present but chromium (Cr) concentration was found within permissible limit to WHO. The levels applied caused a significant (p≀0.05) increase in plant growth and biomass. The extent of membrane damage assessed via malondialdehyde (MDA) production was also greater in the roots of P. pinnata while reverse was true for shoots of J. curcas. A more profound (p≀0.05) reduction in photosynthetic pigments and carotenoids was observed in P. pinnata at concentrated level of effluent. Overall, the study signifies a 2-folds potential of biofuel tree species for efficient reuse of wastewater, as well as for remediation of metals from wastewater and soil

    Tannery effluent induced morpho-biochemical expressions and chromium accumulation in Jatropha curcas L. and Pongamia pinnata L.

    Get PDF
    The use of effluent from various industries by agriculture sector in developing countries may help to mitigate water scarcity and cost of fertilizers but pose considerable threats to entire ecosystem when heavy metals enter the food chain. The aim of the present study was to compare the growth and development of two biofuel tree species Jatropha curcas L. and Pongamia pinnata L. when exposed to 20 and 40 mL L−1 of effluent discharged from a local tannery along with tap water as a control. The physico-chemical attributes assessed for quality of effluent showed higher values and significantly higher chromium (Cr) concentration than other metals. Application of effluent induced profound formation of malondialdehyde (MDA) in P. pinnata. With regard to growth and pigments of plant species, a significant reduction (p≀0.05) in root length, dry shoot biomass, leaf area, chlorophylls and carotenoids occurred in P. pinnata but shoot length, collar diameter and root dry biomass remained unaffected. Similarly, J. curcas sustained root and shoot growth, dry biomass production, collar diameter and leaf area. Increased pigment contents were found at both effluent levels. The roots of P. pinnata accumulated 6 and 11 times more Cr at 20 and 40 mL L−1, respectively, than control. While in J. curcas Cr accumulation was up to 9 folds in shoots at 40 mL L−1. Thus, the two species exhibited differential potential for Cr accumulation in their above and below ground tissues. The study signified the use of contaminated water for irrigation and potential of the species to act as phytoremediator to alleviate both water scarcity and metal contamination

    Development of Electrolyzer Using NiCo(OH)2 Layered Double Hydroxide Catalyst for Efficient Water Oxidation Reaction

    No full text
    Over the past decade, layered double hydroxides (LDH) have been the subject of extensive investigations owing to their remarkable water splitting catalytic activity. Stability and porosity are several of the features of LDH which help them to serve as efficient oxygen evolution reaction (OER) catalysts. Based on these considerations, we synthesized NiCo(OH)2 LDH and probed its OER electrocatalytic performance. The synthesized catalyst was subjected to X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy for structural analysis and investigation of its surface morphology, surface composition, and oxidation states. The LDH-NiCo(OH)2 was anchored over the FTO surface and the fabricated electrode was found to exhibit a much lower OER onset potential of 265 mV, a much higher current density of 300 mAcm−2 and a smaller Tafel slope of 41 mVdec−1. Moreover, the designed catalyst was found to be stable up to 2500 repeated voltametric scans. These figures of merit regarding the structure and performance of the designed LDH are expected to provide useful insights into the fundamental understanding of the OER catalysts and their mechanisms of action, thus enabling the more rational design of cost effective and highly efficient electrocatalysts for use in water splitting

    Development of a Binder-Free Tetra-Metallic Oxide Electrocatalyst for Efficient Oxygen Evolution Reaction

    No full text
    Water splitting has emerged as a sustainable, renewable and zero-carbon-based energy source. Water undergoes hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) during electrolysis. However, among these half-cell reactions, OER is more energy demanding. Hence, the development of efficient catalysts for speeding up OER is a key for boosting up the commercial viability of electrolyzers. Typical binders like Nafion and PVDF are not preferred for designing commercial electrocatalysts as they can compromise conductivity. Thus, we have designed a novel and cost-effective binder-free tetra-metallic (Co-Cu-Zn-Fe) oxide catalyst that efficiently catalyzes OER. This catalyst was grown over the surface of Fluorine doped tin oxide (FTO) transducer by a facile potentiodynamic method. The structure and morphology of the modified electrode were characterized by X-ray diffraction (XRD), scanning electron microscopy, and energy dispersive X-ray spectroscopy. XRD analysis confirmed the deposition of CoFe2O4 and CuCo2O4 along with alloy formation of Co-Fe and Co-Cu. Similarly, EDX and SEM results show the presence of metals at the surface of FTO in accordance with the results of XRD. Linear scan voltammetry was employed for testing the performance of the catalyst towards accelerating OER in strongly alkaline medium of pH-13. The catalyst demonstrated stunning OER catalytic performance, with an overpotential of just 216 mV at 10 mA cm−2 current density. Moreover, the chronopotentiometric response revealed that the designed catalyst was stable at a potential of 1.80 V for 16 h. Thus, the designed catalyst is the first example of a highly stable, efficient, and inexpensive catalyst that catalyzes OER at the lowest overpotential

    Celebrity-Persona and its Effects on Self-Esteem and Life Satisfaction

    No full text
    The study was conducted to examine Celebrity-Persona and its Effects on Self-Esteem and Life Satisfaction among university students. Convenience sampling technique was used to collect the data. The sample consisted of 416 individuals, who were investing more than 5 hours a day on fictional content like novels, movies, dramas, and professional stars (e.g., singers, athletes, actors); 239 male participants and 177 female participants. Satisfaction with Life Scale (Diener, Emmons, Larsen, & Griffin, 1985), Celebrity-Persona Parasocial Interaction Scale (CPPI) (Bocarnea & Brown, 2007) and Six-Item State Self Esteem Scale (Heartherton & Polivy, 1991) were used to measure life satisfaction and celebrity persona parasocial interaction and self-esteem respectively. Life satisfaction has significant positive correlation with celebrity persona parasocial interaction and self-esteem. Parasocial interaction has positive correlation with self-esteem. Excessive exposure to fiction content is negatively correlated with life satisfaction. Simple linear regression analysis showed excessive exposure to fiction content as a predictor of life satisfaction and self-esteem among university students. Celebrity persona parasocial interaction worked as a significant mediator in the relationship between excessive exposure to fiction content and satisfaction with life among university students. Independent sample t-test showed that male students have higher life satisfaction than female students

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore