8 research outputs found

    Structural studies on tobacco streak virus coat protein: Insights into the pleomorphic nature of ilarviruses

    No full text
    Tobacco streak virus (TSV), the type member of Ilarvirus genus, is a major plant pathogen. TSV purified from infected plants consists of a ss-RNA genome encapsidated in spheroidal particles with diameters of 27, 30 and 33 nm constructed from multiple copies of a single species of coat protein (CP) subunits. Apart from protecting the viral genome, CPs of ilarviruses play several key roles in the life cycle of these viruses. Unlike the related bromo and cucumoviruses, ilarvirus particles are labile and pleomorphic, which has posed difficulties in their crystallization and structure determination. In the current study, a truncated TSV-CP was crystallized in two distinct forms and their structures were determined at resolutions of 2.4 angstrom and 2.1 angstrom, respectively. The core of TSV CP was found to possess the canonical beta-barrel jelly roll tertiary structure observed in several other viruses. Dimers of CP with swapped C-terminal arms (C-arm) were observed in both the crystal forms. The C-arm was found to be flexible and is likely to be responsible for the polymorphic and pleomorphic nature of TSV capsids. Consistent with this observation, mutations in the hinge region of the C-arm that reduce the flexibility resulted in the formation of more uniform particles. TSV CP was found to be structurally similar to that of Alfalfa mosaic virus (AMV) accounting for similar mechanism of genome activation in alfamo and ilar viruses. This communication represents the first report on the structure of the CP from an ilarvirus. (C) 2015 Elsevier Inc. All rights reserved

    Assembly of the elongated collagen prolyl 4-hydroxylase α2β2 heterotetramer around a central α2 dimer

    No full text
    Abstract Collagen prolyl 4-hydroxylase (C-P4H), an α2β2 heterotetramer, is a crucial enzyme for collagen synthesis. The α-subunit consists of an N-terminal dimerization domain, a central peptide substrate-binding (PSB) domain, and a C-terminal catalytic (CAT) domain. The β-subunit [also known as protein disulfide isomerase (PDI)] acts as a chaperone, stabilizing the functional conformation of C-P4H. C-P4H has been studied for decades, but its structure has remained elusive. Here, we present a three-dimensional small-angle X-ray scattering model of the entire human C-P4H-I heterotetramer. C-P4H is an elongated, bilobal, symmetric molecule with a length of 290 Å. The dimerization domains from the two α-subunits form a protein–protein dimer interface, assembled around the central antiparallel coiled-coil interface of their N-terminal α-helices. This region forms a thin waist in the bilobal tetramer. The two PSB/CAT units, each complexed with a PDI/β-subunit, form two bulky lobes pointing outward from this waist region, such that the PDI/β-subunits locate at the far ends of the βααβ complex. The PDI/β-subunit interacts extensively with the CAT domain. The asymmetric shape of two truncated C-P4H-I variants, also characterized in the present study, agrees with this assembly. Furthermore, data from these truncated variants show that dimerization between the α-subunits has an important role in achieving the correct PSB–CAT assembly competent for catalytic activity. Kinetic assays with various proline-rich peptide substrates and inhibitors suggest that, in the competent assembly, the PSB domain binds to the procollagen substrate downstream from the CAT domain

    Structural enzymology binding studies of the peptide‐substrate‐binding domain of human collagen prolyl 4‐hydroxylase (type‐II):high affinity peptides have a PxGP sequence motif

    No full text
    Abstract The peptide‐substrate‐binding (PSB) domain of collagen prolyl 4‐hydroxylase (C‐P4H, an α2β2 tetramer) binds proline‐rich procollagen peptides. This helical domain (the middle domain of the α subunit) has an important role concerning the substrate binding properties of C‐P4H, although it is not known how the PSB domain influences the hydroxylation properties of the catalytic domain (the C‐terminal domain of the α subunit). The crystal structures of the PSB domain of the human C‐P4H isoform II (PSB‐II) complexed with and without various short proline‐rich peptides are described. The comparison with the previously determined PSB‐I peptide complex structures shows that the C‐P4H‐I substrate peptide (PPG)3, has at most very weak affinity for PSB‐II, although it binds with high affinity to PSB‐I. The replacement of the middle PPG triplet of (PPG)3 to the nonhydroxylatable PAG, PRG, or PEG triplet, increases greatly the affinity of PSB‐II for these peptides, leading to a deeper mode of binding, as compared to the previously determined PSB‐I peptide complexes. In these PSB‐II complexes, the two peptidyl prolines of its central P(A/R/E)GP region bind in the Pro5 and Pro8 binding pockets of the PSB peptide‐binding groove, and direct hydrogen bonds are formed between the peptide and the side chains of the highly conserved residues Tyr158, Arg223, and Asn227, replacing water mediated interactions in the corresponding PSB‐I complex. These results suggest that PxGP (where x is not a proline) is the common motif of proline‐rich peptide sequences that bind with high affinity to PSB‐II

    Crystal structure of the collagen prolyl 4-hydroxylase (C-P4H) catalytic domain complexed with PDI: Toward a model of the C-P4H α2β2α_2 β_2 tetramer

    No full text
    Collagen prolyl 4-hydroxylases (C-P4H) are α2β2α_2 β_2 tetramers, which catalyze the prolyl 4-hydroxylation of procollagen, allowing for the formation of the stable triple-helical collagen structure in the endoplasmic reticulum. The C-P4H αα-subunit provides the N-terminal dimerization domain, the middle peptide-substrate-binding (PSB) domain, and the C-terminal catalytic (CAT) domain, whereas the ββ-subunit is identical to the enzyme protein disulfide isomerase (PDI). The structure of the N-terminal part of the αα-subunit (N-terminal region and PSB domain) is known, but the structures of the PSB-CAT linker region and the CAT domain as well as its mode of assembly with the ββ/PDI subunit, are unknown. Here, we report the crystal structure of the CAT domain of human C-P4H-II complexed with the intact ββ/PDI subunit, at 3.8 Å resolution. The CAT domain interacts with the a, b’, and a’ domains of the ββ/PDI subunit, such that the CAT active site is facing bulk solvent. The structure also shows that the C-P4H-II CAT domain has a unique N-terminal extension, consisting of α-helices and a ββ-strand, which is the edge strand of its major antiparallel ββ-sheet. This extra region of the CAT domain interacts tightly with the ββ/PDI subunit, showing that the CAT-PDI interface includes an intersubunit disulfide bridge with the a’ domain and tight hydrophobic interactions with the b’ domain. Using this new information, the structure of the mature C-P4H-II α2β2α_2 β_2 tetramer is predicted. The model suggests that the CAT active-site properties are modulated by αα-helices of the N-terminal dimerization domains of both subunits of the α2α_2-dimer

    Structural insights into the substrate-binding proteins Mce1A and Mce4A from Mycobacterium tuberculosis

    No full text
    Abstract Mycobacterium tuberculosis (Mtb), which is responsible for more than a million deaths annually, uses lipids as the source of carbon and energy for its survival in the latent phase of infection. Mtb cannot synthesize all of the lipid molecules required for its growth and pathogenicity. Therefore, it relies on transporters such as the mammalian cell entry (Mce) complexes to import lipids from the host across the cell wall. Despite their importance for the survival and pathogenicity of Mtb, information on the structural properties of these proteins is not yet available. Each of the four Mce complexes in Mtb (Mce1–4) comprises six substrate-binding proteins (SBPs; MceA–F), each of which contains four conserved domains (N-terminal transmembrane, MCE, helical and C-terminal unstructured tail domains). Here, the properties of the various domains of Mtb Mce1A and Mce4A, which are involved in the import of mycolic/fatty acids and cholesterol, respectively, are reported. In the crystal structure of the MCE domain of Mce4A (MtMce4A39–140) a domain-swapped conformation is observed, whereas solution studies, including small-angle X-ray scattering (SAXS), indicate that all Mce1A and Mce4A domains are predominantly monomeric. Further, structural comparisons show interesting differences from the bacterial homologs MlaD, PqiB and LetB, which form homohexamers when assembled as functional transporter complexes. These data, and the fact that there are six SBPs in each Mtb mce operon, suggest that the MceA–F SBPs from Mce1–4 may form heterohexamers. Also, interestingly, the purification and SAXS analysis showed that the helical domains interact with the detergent micelle, suggesting that when assembled the helical domains of MceA–F may form a hydrophobic pore for lipid transport, as observed in EcPqiB. Overall, these data highlight the unique structural properties of the Mtb Mce SBPs

    Crystal structure of the collagen prolyl 4-hydroxylase (C-P4H) catalytic domain complexed with PDI:toward a model of the C-P4H α₂β₂ tetramer

    No full text
    Abstract Collagen prolyl 4-hydroxylases (C-P4H) are α₂β₂ tetramers, which catalyze the prolyl 4-hydroxylation of procollagen, allowing for the formation of the stable triple-helical collagen structure in the endoplasmic reticulum. The C-P4H α-subunit provides the N-terminal dimerization domain, the middle peptide-substrate-binding (PSB) domain, and the C-terminal catalytic (CAT) domain, whereas the β-subunit is identical to the enzyme protein disulfide isomerase (PDI). The structure of the N-terminal part of the α-subunit (N-terminal region and PSB domain) is known, but the structures of the PSB-CAT linker region and the CAT domain as well as its mode of assembly with the β/PDI subunit, are unknown. Here, we report the crystal structure of the CAT domain of human C-P4H-II complexed with the intact β/PDI subunit, at 3.8 Å resolution. The CAT domain interacts with the a, b’, and a’ domains of the β/PDI subunit, such that the CAT active site is facing bulk solvent. The structure also shows that the C-P4H-II CAT domain has a unique N-terminal extension, consisting of α-helices and a β-strand, which is the edge strand of its major antiparallel β-sheet. This extra region of the CAT domain interacts tightly with the β/PDI subunit, showing that the CAT-PDI interface includes an intersubunit disulfide bridge with the a’ domain and tight hydrophobic interactions with the b’ domain. Using this new information, the structure of the mature C-P4H-II α₂β₂ tetramer is predicted. The model suggests that the CAT active-site properties are modulated by α-helices of the N-terminal dimerization domains of both subunits of the α₂-dimer
    corecore