78 research outputs found
A Bilateral Vestibular Schwannoma is Not Always Related to Neurofibromatosis Type 2
: Bilateral vestibular schwannomas are commonly diagnosed in patients affected by neurofibromatosis type 2, a genetic disease caused by a heterozygous mutation in the gene region encoding neurofibromin-2. Sporadic bilateral vestibular schwannomas are very rare entities affecting almost exclusively elderly people. We present the case of a senior woman who was followed up with the "wait-and-scan" strategy for a unilateral vestibular schwannoma that later developed as a contralateral tumor, compatible with vestibular schwannoma, raising questions about its nature and risk of having been transmitted in offspring. Genetic testing excluded mutations of the neurofibromatosis type 2 gene. The presence of bilateral vestibular schwannomas is often considered pathognomonic of neurofibromatosis type 2, but the estimated probability of sporadic bilateral tumors in the absence of other neurofibromatosis type 2 features is 50% over 70 years of age. Therefore, the NF2 gene assessment is in any case recommended in these patients not only for an evaluation of the risk of being transmitted. The treatment strategy should be carefully personalized for each patient, considering the size of the tumors, symptoms, and hearing function together with the patient's age
Diagnostic and Prognostic Value of microRNAs in Patients with Laryngeal Cancer: A Systematic Review
: Laryngeal squamous cell cancer (LSCC) is one of the most common malignant tumors of the head and neck region, with a poor survival rate (5-year overall survival 50-80%) as a consequence of an advanced-stage diagnosis and high recurrence rate. Tobacco smoking and alcohol abuse are the main risk factors of LSCC development. An early diagnosis of LSCC, a prompt detection of recurrence and a more precise monitoring of the efficacy of different treatment modalities are currently needed to reduce the mortality. Therefore, the identification of effective diagnostic and prognostic biomarkers for LSCC is crucial to guide disease management and improve clinical outcomes. In the past years, a dysregulated expression of small non-coding RNAs, including microRNAs (miRNAs), has been reported in many human cancers, including LSCC, and many miRNAs have been explored for their diagnostic and prognostic potential and proposed as biomarkers. We searched electronic databases for original papers that were focused on miRNAs and LSCC, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. According to the outcome, 566 articles were initially screened, of which 177 studies were selected and included in the analysis. In this systematic review, we provide an overview of the current literature on the function and the potential diagnostic and prognostic role of tissue and circulating miRNAs in LSCC
Recommended from our members
Comparison of 5-year progression of retinitis pigmentosa involving the posterior pole among siblings by means of SD-OCT: a retrospective study
The blockchain technology promises to transform finance, money and evengovernments. However, analyses of blockchain applicability and robustness typicallyfocus on isolated systems whose actors contribute mainly by running the consensusalgorithm. Here, we highlight the importance of considering trustless platformswithin the broader ecosystem that includes social and communication networks. Asan example, we analyse the flash-crash observed on 21st June 2017 in the Ethereumplatform and show that a major phenomenon of social coordination led to acatastrophic cascade of events across several interconnected systems. We proposethe concept of “emergent centralisation” to describe situations where a single systembecomes critically important for the functioning of the whole ecosystem, and arguethat such situations are likely to become more and more frequent in interconnectedsocio-technical systems. We anticipate that the systemic approach we propose willhave implications for future assessments of trustless systems and call for the attentionof policy-makers on the fragility of our interconnected and rapidly changing world
Genetic testing for optic atrophy
We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for optic atrophy (OA). OA is mostly inherited in an autosomal dominant manner, rarely in an autosomal recessive manner, with an overall prevalence of 3/100,000 live births. It is caused by mutations in the OPA1, OPA3 and TMEM126A genes. Clinical diagnosis is based on clinical findings, ophthalmological examination, OCT, visual evoked potentials (VEPs) and electroretinography. The genetic test is useful for confirming diagnosis, differential diagnosis, couple risk assessment and access to clinical trials
Genetic testing for Mendelian glaucoma
We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Mendelian glaucomas, a large heterogeneous group of inherited disorders, classified according to age of onset as congenital glaucoma, juvenile glaucoma and age-related glaucoma. Variations in the TEK, MYOC, ASB10, NTF4, OPA1, WDR36 and OPTN genes are inherited in an autosomal dominant manner and variations in the CYP1B1 and LTBP2 genes have autosomal recessive inheritance
Genetic testing for achromatopsia
We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for achromatopsia. The disease has autosomal recessive inheritance, a prevalence of 1/30000-1/50000, and is caused by mutations in the CNGB3, CNGA3, GNAT2, PDE6C, ATF6 and PDE6H genes. Clinical diagnosis is by ophthalmological examination, color vision testing and electrophysiological testing. Genetic testing is useful for confirming diagnosis and for differential diagnosis, couple risk assessment and access to clinical trials
Genetic testing for Mendelian cataract
We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for Mendelian cataract (MC). MC is caused by variations in the AGK, BFSP1, BFSP2, CHMP4B, CRYAA, CRYAB, CRYBA1, CRYBA2, CRYBA4, CRYBB1, CRYBB2, CRYBB3, CRYGC, CRYGD, CRYGS, EPHA2, EYA1, FYCO1, FOXE3, FTL, GALK1, GCNT2, GJA3, GJA8, HSF4, LEMD2, LIM2, LSS, MAF, MIP, NHS, PITX3, PAX6, SIPA1L3, SLC16A12, TDRD7, UNC45B, VIM, VSX, and WFS1 genes. The overall prevalence of congenital forms is 71 per 100 000, whereas there is insufficient data to determine the prevalence of the juvenile and age-related forms. Clinical diagnosis is based on clinical findings, age of onset, family history, ophthalmological examination and slit-lamp examination. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials
Genetic testing for Norrie disease
We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Norrie disease. The disease is caused by variations in the NDP gene. Its prevalence is currently unknown. Inheritance is X-linked recessive. Clinical diagnosis is based on clinical findings, color vision testing, optical coherence tomography, ophthalmological examination and electroretinography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials
Genetic testing for Leber congenital amaurosis
We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Leber congenital amaurosis (LCA). LCA is mostly inherited in an autosomal recessive manner, rarely in an autosomal dominant manner, with an overall prevalence of 2- 3/ 100,000 live births, and is caused by mutations in the AIPL1, CEP290, CRB1, CRX, GDF6, GUCY2D, IFT140, IMPDH1, IQCB1, KCNJ13, LCA5, LRAT, NMNAT1, RD3, RDH12, RPE65, RPGRIP1, SPATA7 and TULP1 genes. Clinical diagnosis involves ophthalmological examination and electrophysiological testing (electroretinography - ERG). The genetic test is useful for confirmation of diagnosis, differential diagnosis, couple risk assessment and access to clinical trials
Genetic testing for non syndromic retinitis pigmentosa
We reviewed the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for non syndromic retinitis pigmentosa (NSRP). NSRP is determined by variations in the ABCA4, AGBL5, ARL2BP, ARL6, BBS2, BEST1, C2orf71, C8orf37, CA4, CDHR1, CERKL, CLRN1, CNGA1, CNGB1, CRB1, CRX, DHDDS, EYS, FAM161A, FSCN2, GUCA1B, HGSNAT, IDH3B, IFT140, IFT172, IMPDH1, IMPG2, KIZ, KLHL7, LRAT, MAK, MERTK, NEK2, NR2E3, NRL, OFD1, PDE6A, PDE6B, PDE6G, POMGNT1, PRCD, PROM1, PRPF3, PRPF31, PRPF4, PRPF6, PRPF8, PRPH2, RBP3, RDH12, RGR, RHO, RLBP1, ROM1, RP1, RP2, RP9, RPE65, RPGR, SAG, SEMA4A, SLC7A14, SNRNP200, SPATA7, TOPORS, TTC8, TULP1, USH2A, ZNF408 and ZNF513 genes. Its overall prevalence is 1 per 4000. It is mostly inherited in an autosomal recessive manner, fewer genes have autosomal dominant or X-linked recessive transmission. Clinical diagnosis is based on clinical findings, ophthalmological examination, best corrected visual acuity (BCVA), slit lamp biomicroscopy, fundus autofluorescence, electroretinography, color vision testing and optical coherence tomography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials
- …