48 research outputs found
Longitudinal study of the effect of sporidesmin toxicity on lamb production and serum biochemistry in a flock of 46 Romney ewes using a standardised measure of liver damage
CAUL Read and Publish Agreement.Publishe
Effect of Palpable Udder Defects on Milk Yield, Somatic Cell Count, and Milk Composition in Non-Dairy Ewes
(c) The Author/sPublishe
Mathematical practice, crowdsourcing, and social machines
The highest level of mathematics has traditionally been seen as a solitary
endeavour, to produce a proof for review and acceptance by research peers.
Mathematics is now at a remarkable inflexion point, with new technology
radically extending the power and limits of individuals. Crowdsourcing pulls
together diverse experts to solve problems; symbolic computation tackles huge
routine calculations; and computers check proofs too long and complicated for
humans to comprehend.
Mathematical practice is an emerging interdisciplinary field which draws on
philosophy and social science to understand how mathematics is produced. Online
mathematical activity provides a novel and rich source of data for empirical
investigation of mathematical practice - for example the community question
answering system {\it mathoverflow} contains around 40,000 mathematical
conversations, and {\it polymath} collaborations provide transcripts of the
process of discovering proofs. Our preliminary investigations have demonstrated
the importance of "soft" aspects such as analogy and creativity, alongside
deduction and proof, in the production of mathematics, and have given us new
ways to think about the roles of people and machines in creating new
mathematical knowledge. We discuss further investigation of these resources and
what it might reveal.
Crowdsourced mathematical activity is an example of a "social machine", a new
paradigm, identified by Berners-Lee, for viewing a combination of people and
computers as a single problem-solving entity, and the subject of major
international research endeavours. We outline a future research agenda for
mathematics social machines, a combination of people, computers, and
mathematical archives to create and apply mathematics, with the potential to
change the way people do mathematics, and to transform the reach, pace, and
impact of mathematics research.Comment: To appear, Springer LNCS, Proceedings of Conferences on Intelligent
Computer Mathematics, CICM 2013, July 2013 Bath, U
Distinct lineages of feline parvovirus associated with epizootic outbreaks in Australia, New Zealand and the United Arab Emirates
Feline panleukopenia (FPL), a frequently fatal disease of cats, is caused by feline parvovirus (FPV) or canine parvovirus (CPV). We investigated simultaneous outbreaks of FPL between 2014 and 2018 in Australia, New Zealand and the United Arab Emirates (UAE) where FPL outbreaks had not been reported for several decades. Case data from 989 cats and clinical samples from additional 113 cats were obtained to determine the cause of the outbreaks and epidemiological factors involved. Most cats with FPL were shelter-housed, 9 to 10 weeks old at diagnosis, unvaccinated, had not completed a primary vaccination series or had received vaccinations noncompliant with current guidelines. Analysis of parvoviral VP2 sequence data confirmed that all FPL cases were caused by FPV and not CPV. Phylogenetic analysis revealed that each of these outbreaks was caused by a distinct FPV, with two virus lineages present in eastern Australia and virus movement between different geographical locations. Viruses from the UAE outbreak formed a lineage of unknown origin. FPV vaccine virus was detected in the New Zealand cases, highlighting the difficulty of distinguishing the co-incidental shedding of vaccine virus in vaccinated cats. Inadequate vaccination coverage in shelter-housed cats was a common factor in all outbreaks, likely precipitating the multiple re-emergence of infection events
Impaired Mitochondrial Microbicidal Responses in Chronic Obstructive Pulmonary Disease Macrophages
RATIONALE: Chronic obstructive pulmonary disease (COPD) is characterized by impaired clearance of pulmonary bacteria. OBJECTIVES: The effect of COPD on alveolar macrophage (AM) microbicidal responses was investigated. METHODS: Alveolar macrophages (AMs) were obtained from bronchoalveolar lavage from healthy donors or COPD patients and challenged with opsonized serotype 14 Streptococcus pneumoniae. Cells were assessed for apoptosis, bactericidal activity and mitochondrial reactive oxygen species (mROS) production. A transgenic mouse line, in which the CD68 promoter ensures macrophage specific expression of human Mcl-1 (CD68.hMcl-1), was used to model the molecular aspects of COPD. MEASUREMENTS AND MAIN RESULTS: COPD AM had elevated levels of Mcl-1, an anti-apoptotic Bcl-2 family member, with selective reduction of delayed intracellular bacterial killing. CD68.hMcl-1 AM phenocopied the microbicidal defect since transgenic mice demonstrated impaired clearance of pulmonary bacteria and increased neutrophilic inflammation. Murine bone marrow-derived macrophages (BMDM) and human monocyte-derived macrophages (MDM) generated mitochondrial reactive oxygen species (mROS) in response to pneumococci, which co-localized with bacteria and phagolysosomes to enhance bacterial killing. The Mcl-1 transgene increased oxygen consumption rates and mROS expression in mock-infected BMDM but reduced caspase-dependent mROS production after pneumococcal challenge. COPD AM also increased basal mROS expression, but failed to increase production after pneumococcal challenge, in keeping with reduced intracellular bacterial killing. The defect in COPD AM intracellular killing was associated with a reduced ratio of mROS /superoxide dismutase 2. CONCLUSIONS: Upregulation of Mcl-1 and chronic adaption to oxidative stress alters mitochondrial metabolism and microbicidal function, reducing the delayed phase of intracellular bacterial clearance in COPD
How to think about informal proofs
This document is the Accepted Manuscript version of the following article: Brendan Larvor, ‘How to think about informal proofs’, Synthese, Vol. 187(2): 715-730, first published online 9 September 2011. The final publication is available at Springer via doi:10.1007/s11229-011-0007-5It is argued in this study that (i) progress in the philosophy of mathematical practice requires a general positive account of informal proof; (ii) the best candidate is to think of informal proofs as arguments that depend on their matter as well as their logical form; (iii) articulating the dependency of informal inferences on their content requires a redefinition of logic as the general study of inferential actions; (iv) it is a decisive advantage of this conception of logic that it accommodates the many mathematical proofs that include actions on objects other than propositions; (v) this conception of logic permits the articulation of project-sized tasks for the philosophy of mathematical practice, thereby supplying a partial characterisation of normal research in the fieldPeer reviewedFinal Accepted Versio
Precision medicine in cats:novel niemann-pick type C1 diagnosed by whole-genome sequencing
State-of-the-art health care includes genome sequencing of the patient to identify genetic variants that contribute to either the cause of their malady or variants that can be targeted to improve treatment. The goal was to introduce state-of-the-art health care to cats using genomics and a precision medicine approach. To test the feasibility of a precision medicine approach in domestic cats, a single cat that presented to the University of Missouri, Veterinary Health Center with an undiagnosed neurologic disease was whole-genome sequenced. The DNA variants from the cat were compared to the DNA variant database produced by the 99 Lives Cat Genome Sequencing Consortium. Approximately 25× genomic coverage was produced for the cat. A predicted p.H441P missense mutation was identified in NPC1, the gene causing Niemann-Pick type C1 on cat chromosome D3.47456793 caused by an adenine-to-cytosine transversion, c.1322A>C. The cat was homozygous for the variant. The variant was not identified in any other 73 domestic and 9 wild felids in the sequence database or 190 additionally genotyped cats of various breeds. The successful effort suggested precision medicine is feasible for cats and other undiagnosed cats may benefit from a genomic analysis approach. The 99 Lives DNA variant database was sufficient but would benefit from additional cat sequences. Other cats with the mutation may be identified and could be introduced as a new biomedical model for NPC1. A genetic test could eliminate the disease variant from the population
Bayesian perspectives on mathematical practice
Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as the Riemann hypothesis, have had to be considered in terms of the evidence for and against them. In recent decades, massive increases in computer power have permitted the gathering of huge amounts of numerical evidence, both for conjectures in pure mathematics and for the behavior of complex applied mathematical models and statistical algorithms. Mathematics has therefore become (among other things) an experimental science (though that has not diminished the importance of proof in the traditional style). We examine how the evaluation of evidence for conjectures works in mathematical practice. We explain the (objective) Bayesian view of probability, which gives a theoretical framework for unifying evidence evaluation in science and law as well as in mathematics. Numerical evidence in mathematics is related to the problem of induction; the occurrence of straightforward inductive reasoning in the purely logical material of pure mathematics casts light on the nature of induction as well as of mathematical reasoning
Barrier Tissue Macrophages: Functional Adaptation to Environmental Challenges
Macrophages are found throughout the body, where they have crucial roles in tissue development, homeostasis and remodeling, as well as being sentinels of the innate immune system that can contribute to protective immunity and inflammation. Barrier tissues, such as the intestine, lung, skin and liver, are exposed constantly to the outside world, which places special demands on resident cell populations such as macrophages. Here we review the mounting evidence that although macrophages in different barrier tissues may be derived from distinct progenitors, their highly specific properties are shaped by the local environment, which allows them to adapt precisely to the needs of their anatomical niche. We discuss the properties of macrophages in steady-state barrier tissues, outline the factors that shape their differentiation and behavior and describe how macrophages change during protective immunity and inflammation