66 research outputs found

    The PRO-RCC study:a long-term PROspective Renal Cell Carcinoma cohort in the Netherlands, providing an infrastructure for ‘Trial within Cohorts’ study designs

    Get PDF
    BACKGROUND: Ongoing research in the field of both localized, locally advanced and metastatic renal cell carcinoma has resulted in the availability of multiple treatment options. Hence, many questions are still unanswered and await further research. A nationwide collaborative registry allows to collect corresponding data. For this purpose, the Dutch PROspective Renal Cell Carcinoma cohort (PRO-RCC) has been founded, for the prospective collection of long-term clinical data, patient reported outcome measures (PROMs) and patient reported experience measures (PREMs).METHODS: PRO-RCC is designed as a multicenter cohort for all Dutch patients with renal cell carcinoma (RCC). Recruitment will start in the Netherlands in 2023. Importantly, participants may also consent to participation in a 'Trial within cohorts' studies (TwiCs). The TwiCs design provides a method to perform (randomized) interventional studies within the registry. The clinical data collection is embedded in the Netherlands Cancer Registry (NCR). Next to the standardly available data on RCC, additional clinical data will be collected. PROMS entail Health-Related Quality of Life (HRQoL), symptom monitoring with optional ecological momentary assessment (EMA) of pain and fatigue, and optional return to work- and/or nutrition questionnaires. PREMS entail satisfaction with care. Both PROMS and PREMS are collected through the PROFILES registry and are accessible for the patient and the treating physician.TRIAL REGISTRATION: Ethical board approval has been obtained (2021_218) and the study has been registered at ClinicalTrials.gov (NCT05326620).DISCUSSION: PRO-RCC is a nationwide long-term cohort for the collection of real-world clinical data, PROMS and PREMS. By facilitating an infrastructure for the collection of prospective data on RCC, PRO-RCC will contribute to observational research in a real-world study population and prove effectiveness in daily clinical practice. The infrastructure of this cohort also enables that interventional studies can be conducted with the TwiCs design, without the disadvantages of classic RCTs such as slow patient accrual and risk of dropping out after randomization.</p

    Copy Number Variants Are Ovarian Cancer Risk Alleles at Known and Novel Risk Loci

    Get PDF
    BACKGROUND: Known risk alleles for epithelial ovarian cancer (EOC) account for approximately 40% of the heritability for EOC. Copy number variants (CNVs) have not been investigated as EOC risk alleles in a large population cohort. METHODS: Single nucleotide polymorphism array data from 13 071 EOC cases and 17 306 controls of White European ancestry were used to identify CNVs associated with EOC risk using a rare admixture maximum likelihood test for gene burden and a by-probe ratio test. We performed enrichment analysis of CNVs at known EOC risk loci and functional biofeatures in ovarian cancer-related cell types. RESULTS: We identified statistically significant risk associations with CNVs at known EOC risk genes; BRCA1 (PEOC = 1.60E-21; OREOC = 8.24), RAD51C (Phigh-grade serous ovarian cancer [HGSOC] = 5.5E-4; odds ratio [OR]HGSOC = 5.74 del), and BRCA2 (PHGSOC = 7.0E-4; ORHGSOC = 3.31 deletion). Four suggestive associations (P < .001) were identified for rare CNVs. Risk-associated CNVs were enriched (P < .05) at known EOC risk loci identified by genome-wide association study. Noncoding CNVs were enriched in active promoters and insulators in EOC-related cell types. CONCLUSIONS: CNVs in BRCA1 have been previously reported in smaller studies, but their observed frequency in this large population-based cohort, along with the CNVs observed at BRCA2 and RAD51C gene loci in EOC cases, suggests that these CNVs are potentially pathogenic and may contribute to the spectrum of disease-causing mutations in these genes. CNVs are likely to occur in a wider set of susceptibility regions, with potential implications for clinical genetic testing and disease prevention

    Assessing the genetic architecture of epithelial ovarian cancer histological subtypes.

    Get PDF
    Epithelial ovarian cancer (EOC) is one of the deadliest common cancers. The five most common types of disease are high-grade and low-grade serous, endometrioid, mucinous and clear cell carcinoma. Each of these subtypes present distinct molecular pathogeneses and sensitivities to treatments. Recent studies show that certain genetic variants confer susceptibility to all subtypes while other variants are subtype-specific. Here, we perform an extensive analysis of the genetic architecture of EOC subtypes. To this end, we used data of 10,014 invasive EOC patients and 21,233 controls from the Ovarian Cancer Association Consortium genotyped in the iCOGS array (211,155 SNPs). We estimate the array heritability (attributable to variants tagged on arrays) of each subtype and their genetic correlations. We also look for genetic overlaps with factors such as obesity, smoking behaviors, diabetes, age at menarche and height. We estimated the array heritabilities of high-grade serous disease ([Formula: see text] = 8.8 ± 1.1 %), endometrioid ([Formula: see text] = 3.2 ± 1.6 %), clear cell ([Formula: see text] = 6.7 ± 3.3 %) and all EOC ([Formula: see text] = 5.6 ± 0.6 %). Known associated loci contributed approximately 40 % of the total array heritability for each subtype. The contribution of each chromosome to the total heritability was not proportional to chromosome size. Through bivariate and cross-trait LD score regression, we found evidence of shared genetic backgrounds between the three high-grade subtypes: serous, endometrioid and undifferentiated. Finally, we found significant genetic correlations of all EOC with diabetes and obesity using a polygenic prediction approach.The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07). The Nurses’ Health Studies would like to thank the participants and staff of the Nurses' Health Study and Nurses' Health Study II for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data. Funding of the constituent studies was provided by the California Cancer Research Program (00-01389V-20170, N01-CN25403, 2II0200); the Canadian Institutes of Health Research (MOP-86727); Cancer Australia; Cancer Council Victoria; Cancer Council Queensland; Cancer Council New South Wales; Cancer Council South Australia; Cancer Council Tasmania; Cancer Foundation of Western Australia; the Cancer Institute of New Jersey; Cancer Research UK (C490/A6187, C490/A10119, C490/A10124); the Danish Cancer Society (94-222-52); the ELAN Program of the University of Erlangen-Nuremberg; the Eve Appeal; the Helsinki University Central Hospital Research Fund; Helse Vest; the Norwegian Cancer Society; the Norwegian Research Council; the Ovarian Cancer Research Fund; Nationaal Kankerplan of Belgium; the L & S Milken Foundation; the Polish Ministry of Science and Higher Education (4 PO5C 028 14, 2 PO5A 068 27); the Roswell Park Cancer Institute Alliance Foundation; the US National Cancer Institute (K07-CA095666, K07-CA80668, K07-CA143047, K22-CA138563, N01-CN55424, N01-PC67001, N01-PC067010, N01-PC035137, P01-CA017054, P01-CA087696, P30-CA072720, P30-CA15083, P30-CA008748, P50-CA159981, P50-CA105009, P50-CA136393, R01-CA149429, R01-CA014089, R01-CA016056, R01-CA017054, R01-CA049449, R01-CA050385, R01-CA054419, R01-CA058598, R01-CA058860, R01-CA061107, R01-CA061132, R01-CA063678, R01-CA063682, R01-CA067262, R01-CA071766, R01-CA074850, R01-CA080978, R01-CA083918, R01-CA087538, R01-CA092044, R01-CA095023, R01-CA122443, R01-CA112523, R01-CA114343, R01-CA126841, R01-CA136924, R03-CA113148, R03-CA115195, U01-CA069417, U01-CA071966, UM1-CA186107, UM1-CA176726 and Intramural research funds); the NIH/National Center for Research Resources/General Clinical Research Center (MO1-RR000056); the US Army Medical Research and Material Command (DAMD17-01-1-0729, DAMD17-02-1-0666, DAMD17-02-1-0669, W81XWH-07-0449, W81XWH-10-1-02802); the US Public Health Service (PSA-042205); the National Health and Medical Research Council of Australia (199600 and 400281); the German Federal Ministry of Education and Research of Germany Programme of Clinical Biomedical Research (01GB 9401); the State of Baden-Wurttemberg through Medical Faculty of the University of Ulm (P.685); the German Cancer Research Center; the Minnesota Ovarian Cancer Alliance; the Mayo Foundation; the Fred C. and Katherine B. Andersen Foundation; the Lon V. Smith Foundation (LVS-39420); the Oak Foundation; Eve Appeal; the OHSU Foundation; the Mermaid I project; the Rudolf-Bartling Foundation; the UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge, Imperial College London, University College Hospital ‘Womens Health Theme’ and the Royal Marsden Hospital; and WorkSafeBC 14. Investigator-specific funding: G.C.P receives scholarship support from the University of Queensland and QIMR Berghofer. Y.L. was supported by the NHMRC Early Career Fellowship. G.C.T. is supported by the National Health and Medical Research Council. S.M. was supported by an ARC Future Fellowship

    rs495139 in the TYMS-ENOSF1 Region and Risk of Ovarian Carcinoma of Mucinous Histology.

    Get PDF
    Thymidylate synthase (TYMS) is a crucial enzyme for DNA synthesis. TYMS expression is regulated by its antisense mRNA, ENOSF1. Disrupted regulation may promote uncontrolled DNA synthesis and tumor growth. We sought to replicate our previously reported association between rs495139 in the TYMS-ENOSF1 3' gene region and increased risk of mucinous ovarian carcinoma (MOC) in an independent sample. Genotypes from 24,351 controls to 15,000 women with invasive OC, including 665 MOC, were available. We estimated per-allele odds ratios (OR) and 95% confidence intervals (CI) using unconditional logistic regression, and meta-analysis when combining these data with our previous report. The association between rs495139 and MOC was not significant in the independent sample (OR = 1.09; 95% CI = 0.97⁻1.22; p = 0.15; N = 665 cases). Meta-analysis suggested a weak association (OR = 1.13; 95% CI = 1.03⁻1.24; p = 0.01; N = 1019 cases). No significant association with risk of other OC histologic types was observed (p = 0.05 for tumor heterogeneity). In expression quantitative trait locus (eQTL) analysis, the rs495139 allele was positively associated with ENOSF1 mRNA expression in normal tissues of the gastrointestinal system, particularly esophageal mucosa (r = 0.51, p = 1.7 × 10-28), and nonsignificantly in five MOC tumors. The association results, along with inconclusive tumor eQTL findings, suggest that a true effect of rs495139 might be small

    Guideline adherence for the surgical treatment of T1 renal tumours correlates with hospital volume: an analysis from the British Association of Urological Surgeons Nephrectomy Audit.

    No full text
    OBJECTIVE: To assess European Association of Urology guideline adherence on the surgical management of patients with T1 renal tumours and the effects of centralisation of care. PATIENTS AND METHODS: Retrospective data from all kidney tumours that underwent radical nephrectomy (RN) or partial nephrectomy (PN) in the period 2012-2016 from the British Association of Urological Surgeons Nephrectomy Audit were retrieved and analysed. We assessed total surgical hospital volume (HV; RN and PN performed) per centre, PN rates, complication rates, and completeness of data. Descriptive analyses were performed, and confidence intervals were used to illustrate the association between hospital volume and proportion of PN. Chi- squared and Cochran-Armitage trend tests were used to evaluate differences and trends. RESULTS: In total, 13 045 surgically treated T1 tumours were included in the analyses. Over time, there was an increase in PN use (39.7% in 2012 to 44.9% in 2016). Registration of the Preoperative Aspects and Dimensions Used for an Anatomical (PADUA) complexity score was included in March 2016 and documented in 39% of cases. Missing information on postoperative complications appeared constant over the years (8.5-9%).  A clear association was found between annual HV and the proportion of T1 tumours treated with PN rather than RN (from 18.1% in centres performing <25 cases/year [lowest volume] to 61.8% in centres performing ≥100 cases/year [high volume]), which persisted after adjustment for PADUA complexity. Overall and major (Clavien-Dindo grade ≥III) complication rate decreased with increasing HV (from 12.2% and 2.9% in low-volume centres to 10.7% and 2.2% in high-volume centres, respectively), for all patients including those treated with PN. CONCLUSION: Closer guideline adherence was exhibited by higher surgical volume centres. Treatment of T1 tumours using PN increased with increasing HV, and was accompanied by an inverse association of HV with complication rate. These results support the centralisation of kidney cancer specialist cancer surgical services to improve patient outcomes

    Real-world outcomes of radium-223 dichloride for metastatic castration resistant prostate cancer

    No full text
    Aim: Timing of radium-223 (Ra-223) in metastatic castration-resistant prostate cancer (mCRPC) remains challenging due to alternative options and short window of opportunity. Methods: Ra-223 treated patients in the CAPRI-registry were included. Outcomes were evaluated based on treatment line of Ra-223. Results: Out of 285 patients, 49% received Ra-223 in line ≥3. 51% completed six Ra-223 injections and 34% had a symptomatic skeletal event after first Ra-223 without differences between subgroups. After correction of known prognostic factors Ra-223 in line ≥3 (HR: 3.267; 95% CI: 1.689-6.317; p < 0.01) remained associated with worse OS. Conclusion: In the Netherlands, Ra-223 was mainly started as second or third mCRPC-treatment in 2014-2018. Later timing of Ra-223 did affect OS, but not treatment completion and occurrence of symptomatic skeletal events
    corecore