1,002 research outputs found

    What causes the large extensions of red-supergiant atmospheres? Comparisons of interferometric observations with 1-D hydrostatic, 3-D convection, and 1-D pulsating model atmospheres

    Full text link
    We present the atmospheric structure and the fundamental parameters of three red supergiants, increasing the sample of RSGs observed by near-infrared spectro-interferometry. Additionally, we test possible mechanisms that may explain the large observed atmospheric extensions of RSGs. We carried out spectro-interferometric observations of 3 RSGs in the near-infrared K-band with the VLTI/AMBER instrument at medium spectral resolution. To comprehend the extended atmospheres, we compared our observational results to predictions by available hydrostatic PHOENIX, available 3-D convection, and new 1-D self-excited pulsation models of RSGs. Our near-infrared flux spectra are well reproduced by the PHOENIX model atmospheres. The continuum visibility values are consistent with a limb-darkened disk as predicted by the PHOENIX models, allowing us to determine the angular diameter and the fundamental parameters of our sources. Nonetheless, in the case of V602 Car and HD 95686, the PHOENIX model visibilities do not predict the large observed extensions of molecular layers, most remarkably in the CO bands. Likewise, the 3-D convection models and the 1-D pulsation models with typical parameters of RSGs lead to compact atmospheric structures as well, which are similar to the structure of the hydrostatic PHOENIX models. They can also not explain the observed decreases in the visibilities and thus the large atmospheric molecular extensions. The full sample of our RSGs indicates increasing observed atmospheric extensions with increasing luminosity and decreasing surface gravity, and no correlation with effective temperature or variability amplitude, which supports a scenario of radiative acceleration on Doppler-shifted molecular lines.Comment: Accepted for publication in A&

    Fabrication and Characterisation of an Adaptable Plasmonic Nanorod Array for Solar Energy Conversion

    Get PDF
    The surface plasmonic modes of a side-by-side aligned gold nanorod array supported on a gold substrate has been characterised by electron energy loss spectroscopy (EELS). Plasmonic coupling within the array splits the nanorods' longitudinal mode into a bright mode (symmetrically aligned dipoles) and a dark mode (anti-symmetrically aligned dipoles). We support this observation by means of finite element modelling (FEM)

    Electron Microscopy Reveals Structural and Chemical Changes at the Nanometer Scale in the Osteogenesis Imperfecta Murine Pathology

    Get PDF
    Alternations of collagen and mineral at the molecular level may have a significant impact on the strength and toughness of bone. In this study, scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) were employed to study structural and compositional changes in bone pathology at nanometer spatial resolution. Tail tendon and femoral bone of osteogenesis imperfecta murine (oim, brittle bone disease) and wild type (WT) mice were compared to reveal defects in the architecture and chemistry of the collagen and collagen-mineral composite in the oim tissue at the molecular level. There were marked differences in the substructure and organization of the collagen fibrils in the oim tail tendon; some regions have clear fibril banding and organization, while in other regions fibrils are disorganized. Malformed collagen fibrils were loosely packed, often bent and devoid of banding pattern. In bone, differences were detected in the chemical composition of mineral in oim and WT. While mineral present in WT and oim bone exhibited the major characteristics of apatite, examination in EELS of the fine structure of the carbon K ionization edge revealed a significant variation in the presence of carbonate in different regions of bone. Variations have been also observed in the fine structure and peak intensities of the nitrogen K-edge. These alterations are suggestive of differences in the maturation of collagen nucleation sites or cross-links. Future studies will aim to establish the scale and impact of the modifications observed in oim tissues. The compositional and structural alterations at the molecular level cause deficiencies at larger length scales. Understanding the effect of molecular alterations to pathologic bone is critical to the design of effective therapeutics

    A 3D view of molecular hydrogen in Supernova 1987A

    Get PDF
    Supernova (SN) 1987A is the only young SN in which H_2 has been detected in the ejecta. The properties of the H_2 are important for understanding the explosion and the ejecta chemistry. Here, we present new VLT/SINFONI observations of H_2 in SN 1987A, focussing on the 2.12 \mu m (1,0)S(1) line. We find that the 3D emissivity is dominated by a single clump in the southern ejecta, with weaker emission being present in the north along the plane of the circumstellar ring. The lowest observed velocities are in the range 400-800 km/s, in agreement with previous limits on inward mixing of H. The brightest regions of H_2 coincide with faint regions of H\alpha, which can be explained by H\alpha being powered by X-ray emission from the ring, while the H_2 is powered by 44Ti. A comparison with ALMA observations of other molecules and dust shows that the brightest regions of H_2, CO and SiO occupy different parts of the inner ejecta and that the brightest H_2 clump coincides with a region of very weak dust emission. The latter is consistent with theoretical predictions that the H_2 should form in the gas phase rather than on dust grains.Comment: Accepted for publication in Ap

    Cryptic lineages, cryptic barriers: Historical seascapes and oceanic fronts drive genetic diversity in supralittoral rockpool beetles (Coleoptera: Hydraenidae)

    Get PDF
    Abstract Morphologically cryptic lineages confound many estimates of global biodiversity and are often discovered in ecologically specialized taxa, subject to strong morphological constraint. Such a situation may apply in many extreme environments, including supralittoral rockpools, where dramatic fluctuations in water availability and salinity impose strong selection pressures on the inhabitants. Here we explore the genetic diversity and phylogeography of supralittoral rockpool Ochthebius beetles in the eastern Atlantic and western Mediterranean, using a combination of mitochondrial and nuclear markers and dense geographical sampling of the three recognized widespread species. Our results point to the existence of morphologically cryptic lineages within all currently named taxa and suggest that the distribution of these is linked to both historical and contemporary marine hydrogeography; a combination of ocean currents and winds apparently driving the spatial patterns observed. The main contemporary barrier to dispersal for Ochthebius is located around the Ibiza Channel, whilst the Messinian Salinity Crisis appears to have been the ultimate driver of lineage diversification in these insects. Our results show that oceanographic processes do not just shape the evolution of fully marine species, but also impact significantly on the terrestrially derived inhabitants of the coastal zone.</jats:p

    Prioritization of fish communities with a view to conservation and restoration on a large scale European basin, the Loire (France)

    Get PDF
    The hierarchical organization of important sites for the conservation or the restoration of fish communities is a great challenge for managers, especially because of financial or time constraints. In this perspective, we developed a methodology, which is easy to implement in different locations. Based on the fish assemblage characteristics of the Loire basin (France), we created a synthetic conservation value index including the rarity, the conservation status and the species origin. The relationship between this new synthetic index and the Fish-Based Index allowed us to establish a classification protocol of the sites along the Loire including fish assemblages to be restored or conserved. Sites presenting disturbed fish assemblages, a low rarity index, few threatened species, and a high proportion of non-native species were considered as important for the restoration of fish biodiversity. These sites were found mainly in areas where the assemblages are typical of the bream zone, e.g. with a higher number of eurytopic and limnophilic species. On the contrary, important sites for conservation were defined as having an important conservation potential (high RI, a lot of threatened species, and few nonnatives fish species) and an undisturbed fish assemblage similar to the expected community if habitats are undisturbed. Important sites for conservation were found in the Loire basin’s medium reaches which host assemblages typical for the grayling and the barbell zones, e.g. with a higher number of rheophilic species. The synthetic conservation value index could be adapted and completed with other criteria according to management priorities and capacities

    Nanoscale chemical heterogeneity in aromatic polyamide membranes for reverse osmosis applications

    Get PDF
    Reverse osmosis membranes are used within the oil and gas industry for sea water desalination on off-shore oilrigs. The membranes consist of three layers of material – a polyester backing layer, a polysulfone support and a polyamide (PA) thin film separating layer. It is generally thought that the PA layer controls ion selectivity within the membrane, but little is understood about its structure or chemistry at the molecular scale. This active polyamide layer is synthesized by interfacial polymerisation at an organic/aqueous interface between m-phenylenediamine (MPD) and trimesoyl chloride (TMC), producing a highly cross-linked polyamide (PA) polymer. It has been speculated that the distribution of functional chemistry within this layer could play a role in solute filtration. The only technique potentially capable of probing the distribution of functional chemistry within the active PA layer with sufficient spatial and energy resolution is scanning transmission electron microscopy combined with electron energy-loss spectroscopy (STEM-EELS). Its use is a challenge because organic materials suffer beam-induced damage at relatively modest electron doses. Here we show that it is possible to use the N K-edge to map the active layer of a PA film using monochromated EELS spectrum imaging. The active PA layer is 12 nm thick, which supports previous neutron reflectivity data. Clear changes in the fine structure of the C K-edge across the PA films are measured and we use machine learning to assign fine structure at this edge. Using this method, we map highly heterogeneous intensity variations in functional chemistry attributed to N-C=C bonds within the PA. Similarities are found with previous molecular dynamics simulations of PA showing regions with a higher density of amide bonding as a result of the aggregation process at similar length scales. The chemical pathways that can be deduced may offer a clearer understanding of the transport mechanisms through the membrane
    corecore