1,515 research outputs found

    Inhibition of monocyte complement receptor enhancement by low molecular weight material from human lung cancers

    Get PDF
    We have studied the effect of dialysates from lung cancer homogenates to alter both the expression of complement (C3b) receptors per se and also to inhibit leucoattractant-induced enhancement of complement rosettes on monocytes from healthy individuals. Enhancement and enhancement-inhibition by tumour extracts were compared with material derived from normal lung excised from distance from the tumour. There was no significant difference between tumour homogenate (TH) and normal lung homogenate (NLH) in terms of enhancement of complement rosettes per se. In contrast, TH produced a dose- and time-dependent inhibition of leucoattractant-induced enhancement of C3b rosettes which was significantly different from that obtained with NLH. This enhancement-inhibition was observed with four undifferentiated, four squamous and three adenocarcinomas of lung. The degree of enhancement-inhibition was not related to the type of tumour or varying accompanying histological features such as necrosis and the degree of infiltration with inflammatory cells. Following gel filtration on Sephadex G-50 each type of cancer gave a major peak of inhibitory activity which eluted with molecules having an apparent molecular size of approximately 3,000 daltons. A second larger peak (8,000-10,000 daltons) was also detected with extracts from the undifferentiated and adenocarcinomas. These results support previous findings, mainly from experimental animals, indicating that 'anti-macrophage/monocyte principles' are elaborated from certain tumour types

    Rare Earth Element Distribution in the NE Atlantic: Evidence for Benthic Sources, Longevity of the Seawater Signal, and Biogeochemical Cycling

    Get PDF
    Seawater rare earth element (REE) concentrations are increasingly applied to reconstruct water mass histories by exploiting relative changes in the distinctive normalised patterns. However, the mechanisms by which water masses gain their patterns are yet to be fully explained. To examine this, we collected water samples along the Extended Ellett Line (EEL), an oceanographic transect between Iceland and Scotland, and measured dissolved REE by offline automated chromatography (SeaFAST) and ICP-MS. The proximity to two continental boundaries, the incipient spring bloom coincident with the timing of the cruise, and the importance of deep water circulation in this climatically sensitive gateway region make it an ideal location to investigate sources of REE to seawater and the effects of vertical cycling and lateral advection on their distribution. The deep waters have REE concentrations closest to typical North Atlantic seawater and are dominated by lateral advection. Comparison to published seawater REE concentrations of the same water masses in other locations provides a first measure of the temporal and spatial stability of the seawater REE signal. We demonstrate the REE pattern is replicated for Iceland-Scotland Overflow Water (ISOW) in the Iceland Basin from adjacent stations sampled 16 years previously. A recently published Labrador Sea Water (LSW) dissolved REE signal is reproduced in the Rockall Trough but shows greater light and mid REE alteration in the Iceland Basin, possibly due to the dominant effect of ISOW and/or continental inputs. An obvious concentration gradient from seafloor sediments to the overlying water column in the Rockall Trough, but not the Iceland Basin, highlights release of light and mid REE from resuspended sediments and pore waters, possibly a seasonal effect associated with the timing of the spring bloom in each basin. The EEL dissolved oxygen minimum at the permanent pycnocline corresponds to positive heavy REE enrichment, indicating maximum rates of organic matter remineralisation and associated REE release. We tentatively suggest a bacterial role to account for the observed heavy REE deviations. This study highlights the need for fully constrained REE sources and sinks, including the temporary nature of some sources, to achieve a balanced budget of seawater REE

    The AMIGA sample of isolated galaxies. V. Quantification of the isolation

    Get PDF
    The AMIGA project aims to build a well defined and statistically significant reference sample of isolated galaxies in order to estimate the environmental effects on the formation and evolution of galaxies. The goal of this paper is to provide a measure of the environment of the isolated galaxies in the AMIGA sample, quantifying the influence of the candidate neighbours identified in our previous work and their potential effects on the evolution of the primary galaxies. Here we provide a quantification of the isolation degree of the galaxies in this sample. Our starting sample is the Catalogue of Isolated Galaxies (CIG). We used two parameters to estimate the influence exerted by the neighbour galaxies on the CIG galaxy: the local number density of neighbour galaxies and the tidal strength affecting the CIG galaxy. We show that both parameters together provide a comprehensive picture of the environment. For comparison, those parameters have also been derived for galaxies in denser environments such as triplets, groups and clusters. The CIG galaxies show a continuous spectrum of isolation, as quantified by the two parameters, from very isolated to interacting. The fraction of CIG galaxies whose properties are expected to be influenced by the environment is however low (159 out of 950 galaxies). The isolated parameters derived for the comparsion samples gave higher values than for the CIG and we found clear differences for the average values of the 4 samples considered, proving the sensitivity of these parameters. The environment of the galaxies in the CIG has been characterised, using two complementary parameters quantifying the isolation degree, the local number density of the neighbour galaxies and the tidal forces affecting the isolated galaxies. (Abridged)Comment: 10 pages, 12 figures, proposed for acceptance A&

    Eccentric black hole-neutron star mergers: effects of black hole spin and equation of state

    Full text link
    There is a high level of interest in black hole-neutron star binaries, not only because their mergers may be detected by gravitational wave observatories in the coming years, but also because of the possibility that they could explain a class of short duration gamma-ray bursts. We study black hole-neutron star mergers that occur with high eccentricity as may arise from dynamical capture in dense stellar regions such as nuclear or globular clusters. We perform general relativistic simulations of binaries with a range of impact parameters, three different initial black hole spins (zero, aligned and anti-aligned with the orbital angular momentum), and neutron stars with three different equations of state. We find a rich diversity across these parameters in the resulting gravitational wave signals and matter dynamics, which should also be reflected in the consequent electromagnetic emission. Before tidal disruption, the gravitational wave emission is significantly larger than perturbative predictions suggest for periapsis distances close to effective innermost stable separations, exhibiting features reflecting the zoom-whirl dynamics of the orbit there. Guided by the simulations, we develop a simple model for the change in orbital parameters of the binary during close encounters. Depending upon the initial parameters of the system, we find that mass transfer during non-merging close encounters can range from essentially zero to a sizable fraction of the initial neutron star mass. The same holds for the amount of material outside the black hole post-merger, and in some cases roughly half of this material is estimated to be unbound. We also see that non-merging close encounters generically excite large oscillations in the neutron star that are qualitatively consistent with f-modes.Comment: 19 pages, 13 figures, revised according to referee comment

    Total cost estimation for implementing genome-enabled selection in a multi-level swine production system

    Get PDF
    Background: Determining an animal’s genetic merit using genomic information can improve estimated breeding value (EBV) accuracy; however, the magnitude of the accuracy improvement must be large enough to recover the costs associated with implementing genome-enabled selection. One way to reduce costs is to genotype nucleus herd selection candidates using a low-density chip and to use high-density chip genotyping for animals that are used as parents in the nucleus breeding herd. The objective of this study was to develop a tool to estimate the cost structure associated with incorporating genome-enabled selection into multi-level commercial breeding programs. Results: For the purpose of this deterministic study, it was assumed that a commercial pig is created from a terminal line sire and a dam that is a cross between two maternal lines. It was also assumed that all male and female selection candidates from the 1000 sow maternal line nucleus herds were genotyped at low density and all animals used for breeding at high density. With the assumptions used in this analysis, it was estimated that genome-enabled selection costs for a maternal line would be approximately US0.082perweanedpiginthecommercialproductionsystem.AtotalofUS0.082 per weaned pig in the commercial production system. A total of US0.164 per weaned pig is needed to incorporate genome-enabled selection into the two maternal lines. Similarly, for a 600 sow terminal line nucleus herd and genotyping only male selection candidates with the low-density panel, the cost per weaned pig in the commercial herd was estimated to be US0.044.ThismeansthatUS0.044. This means that US0.21 per weaned pig produced at the commercial level and sired by boars obtained from the nucleus herd breeding program needs to be added to the genetic merit value in order to break even on the additional cost required when genome-enabled selection is used in both maternal lines and the terminal line. Conclusions: By modifying the input values, such as herd size and genotyping strategy, a flexible spreadsheet tool developed from this work can be used to estimate the additional costs associated with genome-enabled selection. This tool will aid breeders in estimating the economic viability of incorporating genome-enabled selection into their specific breeding program

    The endangered northern bettong, Bettongia tropica, performs a unique and potentially irreplaceable dispersal role for truffle ectomycorrhizal fungi

    Get PDF
    Organisms that are highly connected in food webs often perform unique and vital functions within ecosystems. Understanding the unique ecological roles played by highly connected organisms and the consequences of their loss requires a comprehensive understanding of the functional redundancy among organisms. One important, yet poorly understood, food web is that between truffle‐forming ectomycorrhizal fungi and their mammalian consumers and dispersers. Mammalian fungal specialists rely on fungi as a food source, and they consume and disperse a higher diversity and abundance of fungi than do mycophagous mammals with generalist diets. Therefore, we hypothesise that mammalian fungal specialists are functionally distinct because they disperse a set of fungal taxa not fully nested within the set consumed by the combined generalist mammalian community (i.e. functional redundancy of fungal dispersal is limited). Using high‐throughput sequencing, we compared the fungal composition of 93 scats from the endangered fungal specialist northern bettong (Bettongia tropica) and 120 scats from nine co‐occurring generalist mammal species across three sites and three seasons. Compared with other generalist mammals, B. tropica consumed a more diverse fungal diet with more unique taxa. This aligns with our hypothesis that B. tropica performs a unique dispersal function for ectomycorrhizal truffle fungi. Additionally, modelling of mammalian extinctions predicted rapid loss of food web connections which could result in loss of gene flow for truffle taxa. Our results suggest that this system is sensitive to the extinction of highly connected specialist species like B. tropica and their loss could have consequences for ectomycorrhizal truffle fungal diversity. This suggests that the conservation of fungal specialists is imperative to maintaining ectomycorrhizal fungal diversity and healthy plant‐mycorrhizal relationships

    Modeling of Covalent Bonding in Solids by Inversion of Cohesive Energy Curves

    Full text link
    We provide a systematic test of empirical theories of covalent bonding in solids using an exact procedure to invert ab initio cohesive energy curves. By considering multiple structures of the same material, it is possible for the first time to test competing angular functions, expose inconsistencies in the basic assumption of a cluster expansion, and extract general features of covalent bonding. We test our methods on silicon, and provide the direct evidence that the Tersoff-type bond order formalism correctly describes coordination dependence. For bond-bending forces, we obtain skewed angular functions that favor small angles, unlike existing models. As a proof-of-principle demonstration, we derive a Si interatomic potential which exhibits comparable accuracy to existing models.Comment: 4 pages revtex (twocolumn, psfig), 3 figures. Title and some wording (but no content) changed since original submission on 24 April 199
    corecore