6 research outputs found

    Modeling the 5-Fluorouracil Area Under the Curve Versus Dose Relationship to Develop a Pharmacokinetic Dosing Algorithm for Colorectal Cancer Patients Receiving FOLFOX6

    Get PDF
    5-Fluorouracil (5-FU) is administered based on standard body surface area (BSA) dosing. BSA administration results in highly variable exposure, measured as the area under the concentration-time curve (AUC). An immunoassay (OnDose®; Myriad Genetic Laboratories, Inc., Salt Lake City, UT) that measures plasma 5-FU concentration and reports an AUC in mg · h/L has been developed to optimize therapy using pharmacokinetic (PK) dosing. The results of an analysis to model the 5-FU AUC-dose relationship are presented

    Modeling the 5‐Fluorouracil Area Under the Curve Versus Dose Relationship to Develop a Pharmacokinetic Dosing Algorithm for Colorectal Cancer Patients Receiving FOLFOX6

    No full text
    BACKGROUND. 5-Fluorouracil (5-FU) is administered based on standard body surface area (BSA) dosing. BSA administration results in highly variable exposure, measured as the area under the concentration-time curve (AUC). An immunoassay (OnDose®; Myriad Genetic Laboratories, Inc., Salt Lake City, UT) that measures plasma 5-FU concentration and reports an AUC in mg · h/L has been developed to optimize therapy using pharmacokinetic (PK) dosing. The results of an analysis to model the 5-FU AUC-dose relationship are presented. METHODS. A set of 589 sequential patients from a clinical database receiving 5-FU, leucovorin, and oxaliplatin (the FOLFOX6 regimen) for colorectal cancer (CRC) treatment was analyzed. A subset including only patients who had at least two consecutive cycles tested, received 1,600–3,600 mg/m(2) of continuous infusion 5-FU during the initial test cycle, and had a blood sample collected after ≥18 hours, was used to conduct regression modeling of the change in AUC versus change in dose. RESULTS. A simple regression model with R(2) = 0.51 developed over n = 307 cycle-pair observations characterizes the AUC-Dose relationship as: change in AUC = 0.02063 * dose change. The model suggests that dose changes in the range of 145–727 mg/m(2) would be sufficient to adjust the AUC to a potential therapeutic threshold of >20 mg · h/L for most patients. CONCLUSIONS. 5-FU is an ideal candidate for PK dose optimization. Because individual factors other than dose change may also affect the change in AUC, longitudinal PK monitoring in all cycles and dose adjustment to ensure AUC in the desired range of 20–30 mg · h/L are recommended

    T-Cell Regulation in Lepromatous Leprosy

    No full text
    Regulatory T (T(reg)) cells are known for their role in maintaining self-tolerance and balancing immune reactions in autoimmune diseases and chronic infections. However, regulatory mechanisms can also lead to prolonged survival of pathogens in chronic infections like leprosy and tuberculosis (TB). Despite high humoral responses against Mycobacterium leprae (M. leprae), lepromatous leprosy (LL) patients have the characteristic inability to generate T helper 1 (Th1) responses against the bacterium. In this study, we investigated the unresponsiveness to M. leprae in peripheral blood mononuclear cells (PBMC) of LL patients by analysis of IFN-γ responses to M. leprae before and after depletion of CD25(+) cells, by cell subsets analysis of PBMC and by immunohistochemistry of patients' skin lesions. Depletion of CD25(+) cells from total PBMC identified two groups of LL patients: 7/18 (38.8%) gained in vitro responsiveness towards M. leprae after depletion of CD25(+) cells, which was reversed to M. leprae-specific T-cell unresponsiveness by addition of autologous CD25(+) cells. In contrast, 11/18 (61.1%) remained anergic in the absence of CD25(+) T-cells. For both groups mitogen-induced IFN-γ was, however, not affected by depletion of CD25(+) cells. In M. leprae responding healthy controls, treated lepromatous leprosy (LL) and borderline tuberculoid leprosy (BT) patients, depletion of CD25(+) cells only slightly increased the IFN-γ response. Furthermore, cell subset analysis showed significantly higher (p = 0.02) numbers of FoxP3(+) CD8(+)CD25(+) T-cells in LL compared to BT patients, whereas confocal microscopy of skin biopsies revealed increased numbers of CD68(+)CD163(+) as well as FoxP3(+) cells in lesions of LL compared to tuberculoid and borderline tuberculoid leprosy (TT/BT) lesions. Thus, these data show that CD25(+) T(reg) cells play a role in M. leprae-Th1 unresponsiveness in LL

    Relevance of bovine tuberculosis research to the understanding of human disease: Historical perspectives, approaches, and immunologic mechanisms

    No full text
    corecore