11 research outputs found

    Photodegradation of Ibuprofen, Cetirizine, and Naproxen by PAN-MWCNT/TiO2–NH2 nanofiber membrane under UV light irradiation

    No full text
    Abstract Background In this study, the photodegradation of three pharmaceuticals, namely Ibuprofen (IBP), Naproxen (NPX), and Cetirizine (CIZ) in aqueous media was investigated under UV irradiation. The photocatalyst used in this work consists of surface functionalized titanium dioxide (TiO2–NH2) nanoparticles grafted into Polyacrylonitrile (PAN)/multi-walled carbon nanotube composite nanofibers. Surface modification of the fabricated composite nanofibers was illustrated using XRD, FTIR, and SEM analyses. Results Sets of experiments were performed to study the effect of pharmaceuticals initial concentration (5–50 mg/L), solution pH (2–9), and irradiation time on the degradation efficiency. The results demonstrated that more than 99% degradation efficiency was obtained for IBP, CIZ, and NPX within 120, 40, and 25 min, respectively. Conclusions Comparatively, the photocatalytic degradation of pharmaceuticals using PAN-CNT/TiO2–NH2 composite nanofibers was much more efficient than with PAN/TiO2–NH2 composite nanofibers

    Graphene Oxide Tablets for Sample Preparation of Drugs in Biological Fluids: Determination of Omeprazole in Human Saliva for Liquid Chromatography Tandem Mass Spectrometry

    No full text
    In this study, a novel sort of sample preparation sorbent was developed, by preparing thin layer graphene oxide tablets (GO-Tabs) utilizing a mixture of graphene oxide and polyethylene glycol on a polyethylene substrate. The GO-Tabs were used for extraction and concentration of omeprazole (OME) in human saliva samples. The determination of OME was carried out using liquid chromatography-tandem mass spectrometry (LC–MS/MS) under gradient LC conditions and in the positive ion mode (ESI+) with mass transitions of m/z 346.3→198.0 for OME and m/z 369.98→252.0 for the internal standard. Standard calibration for the saliva samples was in the range of 2.0–2000 nmol L−1. Limits of detection and quantification were 0.05 and 2.0 nmol L−1, respectively. Method validation showed good method accuracy and precision; the inter-day precision values ranged from 5.7 to 8.3 (%RSD), and the accuracy of determinations varied from −11.8% to 13.3% (% deviation from nominal values). The extraction recovery was 60%, and GO-Tabs could be re-used for more than ten extractions without deterioration in recovery. In this study, the determination of OME in real human saliva samples using GO-Tab extraction was validated

    A ‘Continuous flow’ Photochemical Water Treatment System Based on Radially Oriented ZnO Nanowires on Flexible Poly-L-Lactide Nanofibers

    No full text
    Several oxide ceramics, notably ZnO and TiO2 are known to catalyze decomposition of organic molecules in water under ultra-violet irradiation. Here we describe fabrication of highly flexible ZnO-based hierarchical nanostructure obtained by growing radially oriented ZnO nanowires on poly-L-lactide nanofibers. Utilizing the flexibility and high surface area of polymeric nanofibers as novel ‘substrate’ for growth of the photochemically active ZnO nanowires we show a proof-of-principle demonstration of a ‘continuous flow’ water treatment set-up. We have monitored photocatalytic decomposition of known organic pollutants, such as methylene blue, monocrotophos and diphenylamine under illumination with ultraviolet light using this highly flexible hierarchical nanostructure.QC2010061

    A ‘Continuous flow’ Photochemical Water Treatment System Based on Radially Oriented ZnO Nanowires on Flexible Poly-L-Lactide Nanofibers

    No full text
    Several oxide ceramics, notably ZnO and TiO2 are known to catalyze decomposition of organic molecules in water under ultra-violet irradiation. Here we describe fabrication of highly flexible ZnO-based hierarchical nanostructure obtained by growing radially oriented ZnO nanowires on poly-L-lactide nanofibers. Utilizing the flexibility and high surface area of polymeric nanofibers as novel ‘substrate’ for growth of the photochemically active ZnO nanowires we show a proof-of-principle demonstration of a ‘continuous flow’ water treatment set-up. We have monitored photocatalytic decomposition of known organic pollutants, such as methylene blue, monocrotophos and diphenylamine under illumination with ultraviolet light using this highly flexible hierarchical nanostructure.QC2010061

    Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations

    No full text
    Efficient oxygen evolution reaction (OER) electrocatalysts are pivotal for sustainable fuel production, where the Ni-Fe oxyhydroxide (OOH) is among the most active catalysts for alkaline OER. Electrolyte alkali metal cations have been shown to modify the activity and reaction intermediates, however, the exact mechanism is at question due to unexplained deviations from the cation size trend. Our X-ray absorption spectroelectrochemical results show that bigger cations shift the Ni2+/(3+delta)+ redox peak and OER activity to lower potentials (however, with typical discrepancies), following the order CsOH>NaOH approximate to KOH>RbOH>LiOH. Here, we find that the OER activity follows the variations in electrolyte pH rather than a specific cation, which accounts for differences both in basicity of the alkali hydroxides and other contributing anomalies. Our density functional theory-derived reactivity descriptors confirm that cations impose negligible effect on the Lewis acidity of Ni, Fe, and O lattice sites, thus strengthening the conclusions of an indirect pH effect. It is commonly accepted that electrolyte alkali metal cations modify the catalytic activity for oxygen evolution reaction. Here the authors challenge this assumption, showing that the activity is actually affected by a change in the electrolyte pH rather than a specific alkali cation

    Microsomal Glutathione Transferase 1 Protects Against Toxicity Induced by Silica Nanoparticles but Not by Zinc Oxide Nanoparticles

    No full text
    Microsomal glutathione transferase 1 (MGST1) is an antioxidant enzyme located predominantly in the mitochondrial outer membrane and endoplasmic reticulum and has been shown to protect cells from lipid peroxidation induced by a variety of cytostatic drugs and pro-oxidant stimuli. We hypothesized that MGST1 may also protect against nanomaterial-induced cytotoxicity through a specific effect on lipid peroxidation. We evaluated the induction of cytotoxicity and oxidative stress by TiO<sub>2</sub>, CeO<sub>2</sub>, SiO<sub>2</sub>, and ZnO in the human MCF-7 cell line with or without overexpression of MGST1. SiO<sub>2</sub> and ZnO nanoparticles caused dose- and time-dependent toxicity, whereas no obvious cytotoxic effects were induced by nanoparticles of TiO<sub>2</sub> and CeO<sub>2</sub>. We also noted pronounced cytotoxicity for three out of four additional SiO<sub>2</sub> nanoparticles tested. Overexpression of MGST1 reversed the cytotoxicity of the main SiO<sub>2</sub> nanoparticles tested and for one of the supplementary SiO<sub>2</sub> nanoparticles but did not protect cells against ZnO-induced cytotoxic effects. The data point toward a role of lipid peroxidation in SiO<sub>2</sub> nanoparticle-induced cell death. For ZnO nanoparticles, rapid dissolution was observed, and the subsequent interaction of Zn<sup>2+</sup> with cellular targets is likely to contribute to the cytotoxic effects. A direct inhibition of MGST1 by Zn<sup>2+</sup> could provide a possible explanation for the lack of protection against ZnO nanoparticles in this model. Our data also showed that SiO<sub>2</sub> nanoparticle-induced cytotoxicity is mitigated in the presence of serum, potentially through masking of reactive surface groups by serum proteins, whereas ZnO nanoparticles were cytotoxic both in the presence and in the absence of serum
    corecore