164 research outputs found

    High Speed Low Power Cyclic Redundancy Check-32 using FPGA

    Get PDF
    Cyclic Redundancy Check (CRC) is a method used for error detection technique and data integrity. CRC take a block of a message‟s bits and divide it by a binary number called polynomial, the result of this division is the checksum that will be added to the message. On the receiver side, the same division will be performed to get the remainder which could be compared with the transmitted checksum if there are no differences that are mean there are no errors. This paper aims to design CRC32 that applied in the Ethernet frame by using Field Programmable Gate Array (FPGA) Virtex-7. Lookup tables and slicing-by-16 algorithm are used together to calculate the CRC32 in parallel. Xilinx ISE used as IDE and synthesis tool and I-Sim used for simulation purposes. The result of this design is 1.250 ns which is the processing time and 102.4 Gbps which is the throughput, furthermore the power consumption is very low as well as the device utilization

    Enhanced Image Encryption Using Two Chaotic Maps

    Get PDF
    Information security is an important aspect in various communication areas, multimedia frameworks, medical imaging and militant communications. However, most of them encounter issues such as insufficient robustness or security. Recently, the approach of achieving information security by using chaotic techniques has gained popularity, since they provide ergodic and random generated keys. This paper introduces a combination of two chaotic maps (3D logistic map and Arnold's cat map) that meet the general security requirements of image transmission. First the image is encrypted using Arnold's cat map, which shuffles the image pixels. 3D logistic map is applied to the encrypted image for transformation and permutation purposes. Then the XOR operation for the encrypted image and a chaotic sequence key are used to provide more security after the pixel values have been changed. The performance of the proposed security method was evaluated using MATLAB by analyzing the correlation between adjacent pixels, histogram analysis, and entropy information. The simulation results showed that the proposed method is robust and resilient. It can achieve an average of 7.99 for entropy information, 99.6% for NPCR, and 33.77 % for UCAI.     

    Numerical modeling of infrared thermography techniques via ANSYS

    Get PDF
    Several inspection techniques have been developed over years. Recently, infrared thermography (IRT) technology has become a widely accepted as a nondestructive inspection (NDI) technique for different fields and various applications as well. Infrared thermography stands as one of the most an attractive and a successful NDI technique that has ability to detect the object\u27s surface/subsurface defects remotely based on observing and measuring the surface\u27s emitted infrared heat radiation by using an infrared camera. The finite element modeling FEM ANSYS was successfully used for the modelling of several IRT techniques; such as Pulsed Thermography (PT) and Lock-in Thermography (LT) that can be used to detect the in-plane defects which are parallel to its surface; besides a Laser Spot Thermography (LST) technique that can be used to detect the cracks which are perpendicular to its surface. Furthermore; this thesis describes how LST method can be extended to a new technique, Laser Digital Micromirror Thermography (LDMT), based on using a digital micromirror device (DMD) that has ability to generate multi-hot spots onto the specimen\u27s surface being examined by using single laser source. In one hand, this thesis aims to show investigations about infrared thermography technology as a non-destructive inspection (IRT-NDI) by using numerical modeling methods via ANSYS. On the other hand, this thesis presents FEM ANSYS as a powerful tool allows doing several inspections, analyses, and evaluations of thermography techniques tests based on numerical modeling simulations and comparing their results to the corresponding experiments in literature experiment tests to validate these simulations and show a reasonable agreement to use ANSYS as a thermography inspection tool for future study and researches --Abstract, page iii

    PID Controller Design for Cruise Control System using Particle Swarm Optimization

    Get PDF
    This paper presents a design of a Proportional-Integral-Derivative (PID) controller for automobile cruise controlsystem. The parameters of the PID controller, which are the proportional ( ), derivative ( ) , and integrator ( ), have beenselected using Particle Swarm Optimization (PSO) algorithm. In this study, the overall system performance has beencompared with other predesigned controllers (conventional PID, Fuzzy logic PID, state space, and Genetic algorithm basedPID controller). The simulation result illustrates that PSO based PID controller gives the best response in terms of settlingtime, rise time, peak time, and maximum overshot. The robustness analysis shows that the system is robust despite thedeviations in some of the system parameters

    Assessing of Some Toxic Heavy Metals Levels and Using Geo Accumulation Index in Sediment of Shatt Al-Arab and the Iraqi Marine Region

    Get PDF
    Mercury, arsenic, cadmium and lead, were measured in sediment samples of river and marine environmental of Basra governorate in southern of Iraq. Sixteen sites of sediment were selected and distributed along Shatt Al-Arab River and the Iraqi marine environment. The samples were distributed among one station on Euphrates River before its confluence with Tigris River and Shatt Al-Arab formation, seven stations along Shatt Al-Arab River and eight stations were selected from the Iraqi marine region. All samples were collected from surface sediment in low tide time. ICP technique was used for the determination of mercury and arsenic for all samples, while cadmium and lead were measured for the same samples by using Atomic Absorption Spectroscopy. The results for all the measurements in Shatt Al-Arab sediment showed the values at extent: (0.0611-0.1233 µg/g), (0.5490-46.2052µg/g), (2.3356-4.7773 µg/g), (51.3309-107.0358 µg/g) for concentration of mercury, arsenic, cadmium and lead respectively.While the concentrations in marine sediment were recorded at range: arsenic (0.3510 - 46.0110 µg/g), cadmium (3.5136 - 5.5905 µg/g) and lead (43.68974-75.37045µg/g). The statistical analysis for all stations was studied by using the software SPSS v-20.0. It shows there are no significant differences in the concentrations between stations at P≥0.05 level and also the geo accumulation index was calculated for metals in all stations

    Multi-task CNN Model for Attribute Prediction

    Full text link
    This paper proposes a joint multi-task learning algorithm to better predict attributes in images using deep convolutional neural networks (CNN). We consider learning binary semantic attributes through a multi-task CNN model, where each CNN will predict one binary attribute. The multi-task learning allows CNN models to simultaneously share visual knowledge among different attribute categories. Each CNN will generate attribute-specific feature representations, and then we apply multi-task learning on the features to predict their attributes. In our multi-task framework, we propose a method to decompose the overall model's parameters into a latent task matrix and combination matrix. Furthermore, under-sampled classifiers can leverage shared statistics from other classifiers to improve their performance. Natural grouping of attributes is applied such that attributes in the same group are encouraged to share more knowledge. Meanwhile, attributes in different groups will generally compete with each other, and consequently share less knowledge. We show the effectiveness of our method on two popular attribute datasets.Comment: 11 pages, 3 figures, ieee transaction pape

    Heat Transfer Analysis of Conventional Round Tube and Microchannel Condensers in Automotive Air Conditioning System

    Get PDF
    In this paper, an experimental analysis of conventional air cooled round tube and microchannel condensers in an automotive air conditioning cycle in term of heat transfer coefficient and energy is presented. The analysis was carried out in a test unit of automotive air conditioning system works with R134a. The conventional round tube plate fin condenser, and cycle were examined first. After that the conventional condenser is replaced by a parallel flow multi-louvered fin microchannel condenser with 0.1 mm hydraulic diameter, and the same experiments in same conditions have been re-implemented. The performance of two condenser and cycles were tested in terms of ambient temperature, which it was varied from 40oC to 65oC. Besides, the indoor temperature and load has been set to 23oC and 2200 W respectively. It was found that replacing the round tube conventional condenser with a microchannel is useful and can enhances the total cycle performance. Because, the microchannel condenser has 224 % and 77 % higher refrigerant side and air side heat transfer coefficient than the conventional. So that, the COP, in case of using the microchannel condenser, was found to be 20 % higher than the conventional. In addition, the microchannel condenser 50 % smaller volume than the conventional. Therefore, it provides more empty space in the car engine container to be occupied with other components or to be removed. Keywords: Automotive air conditioning, Condenser, Microchannel, Heat transfer, Energ

    Numerical modeling of infrared thermography techniques via ANSYS

    Get PDF
    Several inspection techniques have been developed over years. Recently, infrared thermography (IRT) technology has become a widely accepted as a nondestructive inspection (NDI) technique for different fields and various applications as well. Infrared thermography stands as one of the most an attractive and a successful NDI technique that has ability to detect the object\u27s surface/subsurface defects remotely based on observing and measuring the surface\u27s emitted infrared heat radiation by using an infrared camera. The finite element modeling FEM ANSYS was successfully used for the modelling of several IRT techniques; such as Pulsed Thermography (PT) and Lock-in Thermography (LT) that can be used to detect the in-plane defects which are parallel to its surface; besides a Laser Spot Thermography (LST) technique that can be used to detect the cracks which are perpendicular to its surface. Furthermore; this thesis describes how LST method can be extended to a new technique, Laser Digital Micromirror Thermography (LDMT), based on using a digital micromirror device (DMD) that has ability to generate multi-hot spots onto the specimen\u27s surface being examined by using single laser source. In one hand, this thesis aims to show investigations about infrared thermography technology as a non-destructive inspection (IRT-NDI) by using numerical modeling methods via ANSYS. On the other hand, this thesis presents FEM ANSYS as a powerful tool allows doing several inspections, analyses, and evaluations of thermography techniques tests based on numerical modeling simulations and comparing their results to the corresponding experiments in literature experiment tests to validate these simulations and show a reasonable agreement to use ANSYS as a thermography inspection tool for future study and researches --Abstract, page iii
    • …
    corecore