100 research outputs found

    Phytoplankton primary production in southern Iraqi marshes after restoration

    Get PDF
    Primary productivity and chlorophyll-a were used in this study to monitor the restoration process of southern Iraqi marshes (Al-Hewaizeh, central marshes, and Al-Hammar). The phytoplankton primary productivity was based on oxygen light/dark bottle method. Two different depths samples were taken monthly from six studied marshes stations (two stations for each marsh) during November 2005 to October 2006, while chlorophyll-a samples taken from surface water. The phytoplankton primary productivity values ranged 9.38 – 249.79 mg C/m3.hr for all marshes, its values for surface water sample ranged 11.71 – 256.24 mg C/m3.hr, while for 1m depth ranged 9.38 – 142.5 mg C/m3.hr. Chlorophyll-a values ranged between (1.1 – 21.26) µg/l indicating high values of productivity in the studied marshes comparing with other aquatic Iraqi ecosystems. Also, dissolved oxygen and oxygen saturation rate were measured in this study

    Investigation on self energized automated multi levels car parking system

    Get PDF
    This work proposes a method to enhance the green power demands through providing an energy source which utilizes the kinetic green energy of the vehicles in multi-level car parking building, where vehicles are already climbing when the driver looking for space to park, and then climb down to go out the building with a kinetic energy due to ground gravity. A novel mechanism has been designed to generate electric power in each individual level from the car parking building, this individuality not only would generate more energy but also simplified the system and reduce the installation cost. The simulation result shows a significant energy value which could cover the demand of the parking place from the electricity, such as lighting, ventilation, barrier gate and CCTV

    Review of gravitational electric energy and application perspectives on modern buildings

    Get PDF
    Recently, exploitation of the renewable energy resources has been underlined in high-rise buildings, the contribution of building in energy conservation has witnessed increased advances in the recent years in both residential and commercial sectors. The increasing demand for building services and comfort levels as well as due to growth in population and the time that the people spent inside that commercial buildings and homes, which leads to upward trends for more demand on energy and continue in future. Therefore, the conservation of energy in buildings nowadays is a major objective for energy policy over all levels. From the viewpoint of energy conception efficiency and user's safety, highlighting of Gravitational Energy (GE) is a meaningful, but considered as a big challenging problem. This paper presents an investigation based on the current state of the art regarding the possibilities of energy generations in the buildings with multilevel parking. Therefore, the research divides the potential and kinetic energy of the climbed down vehicles in such buildings into mainly related technologies for utilizing all possible energy which could convert to electricity. Thus, the research Check the feasibility, energy management and control strategies of the Regenerative Braking System (RBS) in railways, Electric Vehicle (EV), and elevators depending on the modern research works. From this paper survey, it can be revealed that the RBS as a GE systems with multi-converter devices are active for the recipient energy systems to improve efficiency, quality and reliability of the power source

    Gravitational electric energy of a multilevel parking buildings in commercial and residential sectors proof of concept and prototype measurements

    Get PDF
    Gravitation energy harvesting of climbed down objects is a promise to harvest unused potential energy from a host building or structure. Similarly, a dynamically dropper mechanism is proved to be a simple and effective electric energy generator, with many practical implementations in power, civil, and mechanical engineering. This research analyzes the prospect of using a mechanism tends to be near to the elevator structure, but without the counterweight for all possible energy harvesting. To achieve this aim, a dropper structure is supplemented with a new energy storage charging system for both the main kinetic and braking energy harvesting. A prototype of a scaled down system has been built and assumed that the original structure is a one level parking building and all the parked vehicles has a potential energy due to their climbed down to get out, which in turn is harvested by means of a DC generator. The primary goal is to maintain the control process for both; the speed and position by applying equivalent electric load to achieve maximum possible harvest energy from the host structure. Matching voltage and brake generative strategies is used to perform the energy harvesting concept. A polynomial modeling equation have been derived to form expressions of the attained power rate. The maximum power point (MPP) of the system has been extracted to highlight the optimization of system performance

    Control mechanism of automated dropper system for electric power generation

    Get PDF
    Gravitation energy harvesting of climbed down objects is a promise to harvest unused potential energy from a host building or structure. Similarly, a dynamically dropper mechanism is proved to be a simple and effective electric energy generator, with many practical implementations in power, civil, and mechanical engineering. This research analyzes the prospect of using a mechanism which tends to be near to the elevator structure, but without the counterweight for all possible energy harvesting. To achieve this aim, a dropper structure is supplemented with a new energy storage charging system for both the main kinetic and braking energy harvesting. A prototype of a scaled down system has been built and assumed that the original structure is a one level parking building and all the parked vehicles has a potential energy due to their climbed down to get out, which in turn is harvested by means of a DC generator. The primary goal is to maintain the control process for both; the speed and position by applying equivalent electric load to achieve maximum possible harvest energy from the host structure. Matching voltage and brake generative strategies is used to perform the energy harvesting concept. A polynomial modeling equation have been derived to form expressions of the attained power rate. The maximum power point (MPP) of the system has been extracted to highlight the optimization of system performance

    In‐person interventions to reduce social isolation and loneliness: An evidence and gap map

    Get PDF
    BackgroundSocial isolation and loneliness can occur in all age groups, and they are linked to increased mortality and poorer health outcomes. There is a growing body of research indicating inconsistent findings on the effectiveness of interventions aiming to alleviate social isolation and loneliness. Hence the need to facilitate the discoverability of research on these interventions.ObjectivesTo map available evidence on the effects of in-person interventions aimed at mitigating social isolation and/or loneliness across all age groups and settings.Search MethodsThe following databases were searched from inception up to 17 February 2022 with no language restrictions: Ovid MEDLINE, Embase, EBM Reviews—Cochrane Central Register of Controlled Trials, APA PsycInfo via Ovid, CINAHL via EBSCO, EBSCO (all databases except CINAHL), Global Index Medicus, ProQuest (all databases), ProQuest ERIC, Web of Science, Korean Citation Index, Russian Science Citation Index, and SciELO Citation Index via Clarivate, and Elsevier Scopus.Selection CriteriaTitles, abstracts, and full texts of potentially eligible articles identified were screened independently by two reviewers for inclusion following the outlined eligibility criteria.Data Collection and AnalysisWe developed and pilot tested a data extraction code set in Eppi-Reviewer. Data was individually extracted and coded. We used the AMSTAR2 tool to assess the quality of reviews. However, the quality of the primary studies was not assessed.Main ResultsA total of 513 articles (421 primary studies and 92 systematic reviews) were included in this evidence and gap map which assessed the effectiveness of in-person interventions to reduce social isolation and loneliness. Most (68%) of the reviews were classified as critically low quality, while less than 5% were classified as high or moderate quality. Most reviews looked at interpersonal delivery and community-based delivery interventions, especially interventions for changing cognition led by a health professional and group activities, respectively. Loneliness, wellbeing, and depression/anxiety were the most assessed outcomes. Most research was conducted in high-income countries, concentrated in the United States, United Kingdom, and Australia, with none from low-income countries. Major gaps were identified in societal level and community-based delivery interventions that address policies and community structures, respectively. Less than 5% of included reviews assessed process indicators or implementation outcomes. Similar patterns of evidence and gaps were found in primary studies. All age groups were represented but more reviews and primary studies focused on older adults (≥60 years, 63%) compared to young people (≤24 years, 34%). Two thirds described how at-risk populations were identified and even fewer assessed differences in effect across equity factors for populations experiencing inequities

    Selenium and Lung Cancer: A Systematic Review and Meta Analysis

    Get PDF
    Selenium is a natural health product widely used in the treatment and prevention of lung cancers, but large chemoprevention trials have yielded conflicting results. We conducted a systematic review of selenium for lung cancers, and assessed potential interactions with conventional therapies.Two independent reviewers searched six databases from inception to March 2009 for evidence pertaining to the safety and efficacy of selenium for lung cancers. Pubmed and EMBASE were searched to October 2009 for evidence on interactions with chemo- or radiation-therapy. In the efficacy analysis there were nine reports of five RCTs and two biomarker-based studies, 29 reports of 26 observational studies, and 41 preclinical studies. Fifteen human studies, one case report, and 36 preclinical studies were included in the interactions analysis. Based on available evidence, there appears to be a different chemopreventive effect dependent on baseline selenium status, such that selenium supplementation may reduce risk of lung cancers in populations with lower baseline selenium status (serum<106 ng/mL), but increase risk of lung cancers in those with higher selenium (≥ 121.6 ng/mL). Pooling data from two trials yielded no impact to odds of lung cancer, OR 0.93 (95% confidence interval 0.61-1.43); other cancers that were the primary endpoints of these trials, OR 1.51 (95%CI 0.70-3.24); and all-cause-death, OR 0.93 (95%CI 0.79-1.10). In the treatment of lung cancers, selenium may reduce cisplatin-induced nephrotoxicity and side effects associated with radiation therapy.Selenium may be effective for lung cancer prevention among individuals with lower selenium status, but at present should not be used as a general strategy for lung cancer prevention. Although promising, more evidence on the ability of selenium to reduce cisplatin and radiation therapy toxicity is required to ensure that therapeutic efficacy is maintained before any broad clinical recommendations can be made in this context

    Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. Methods: Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. Findings: In 2021, there were 529 million (95% uncertainty interval [UI] 500–564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8–6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7–9·9]) and, at the regional level, in Oceania (12·3% [11·5–13·0]). Nationally, Qatar had the world's highest age-specific prevalence of diabetes, at 76·1% (73·1–79·5) in individuals aged 75–79 years. Total diabetes prevalence—especially among older adults—primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1–96·8) of diabetes cases and 95·4% (94·9–95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5–71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5–30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22–1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1–17·6) in north Africa and the Middle East and 11·3% (10·8–11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. Interpretation: Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers. Funding: Bill & Melinda Gates Foundation
    corecore