19 research outputs found

    The teratogenicity and behavioral teratogenicity of di(2-ethylhexyl) phthalate (DEHP) and di-butyl Phthalate (DBP) in a chick model

    Get PDF
    Phthalates are industrial chemicals widely used in consumer products, plastics and children toys, and the risk of exposure to phthalates, especially prenatal exposure, is a growing concern justifying the development of an animal model to better understand their effect. The present study was designed to evaluate the suitability of a chick model for phthalate DEHP teratogenicity and neurobehavioral teratogenicity, a model which is simple and devoid of potential confounding factors such as maternal toxicity, maternal-fetal unit and maternalneonatal interactions; major findings were confirmed in the DBP study. Prehatch exposure to DEHP in doses ranging from 20 to 100 mg/kg, reduced the percent hatching from 80% in control eggs to 65%, and increased late hatchings from 12.5% in control eggs to 29.4%. In addition it induced developmental defects characterized by an opening or weakening of abdominal muscles allowing internal organs to protrude externally with or without a sac, omphalocele or gastroschisis, respectively. The effect was dose dependent ranging from 8% with DEHP (20 mg/kg) to 22% (100 mg/kg). Similar treatment with DBP 100 mg/kg has reduced percentage hatching to 57% and increased late hatching to 37.5%, with a 14% increase in gastroschisis. Biochemical evaluation revealed elevated levels of alkaline phosphatase, which reflects non-specific toxicity of DEHP at such a high dose. Behavioral evaluation using an imprinting test and locomotor activity on chicks pretreated with DEHP (100 mg/kg) has shown an abolishment of imprinting performance from the control (0.65) preference ratio. DNA damage measurements of the metabolite 8-hydroxydeoxyguanosine (8-OH-dG) in blood samples showed an increase of 39.7% after prehatch exposure to phthalates. This was statistically significant for DEHP and indicates genetic toxicity, since part of the teratogenic activity is associated with oxidative stress and DNA damage.This study was supported by a grant from the Al-Quds Nutrition & Health Research Institute. The authors would like to thank Mr. Rateb Hussein and Mr. Munther Metani for their technical assistance, and Dr. Tamer Essawi and Mr. Firas Hassan for their help in performing the biochemical measurements

    VANET routing protocols: review, implementation and analysis

    Get PDF
    Wireless technology is developing very fast. Most of the researchers are working in the field of wireless communication. VANET is an evolving technology in the field of wireless communication and with the advancement it will contribute more to the smart transportation system in days to come. VANET gives a communication framework that has enhanced the traffic service and helped in reducing the road accidents. Data sharing in this system is time sensitive and require quick and vigorous network connection forming. VANET is serving the said purposes but there are some issues and challenges like efficient handling of fast handovers for video streaming applications. Therefore, in this paper we have reviewed and discussed several studies related to the routing protocols to judge which one is the best for video applications in VANET. Moreover, after studying different systems made by the researchers, we have critically analyzed them and found advantages and disadvantages for the future works. Also, simulation is performed to check the delays and throughput comparisons between the routing protocols. Furthermore, with the experiments we have proven that the AODV performance is better than the other ad-hoc protocols in VANET environment

    Interplay of Oxidative Stress and Necrosis-like Cell Death in Cardiac Ischemia/Reperfusion Injury:A Focus on Necroptosis

    Get PDF
    Extensive research work has been carried out to define the exact significance and contribution of regulated necrosis-like cell death program, such as necroptosis to cardiac ischemic injury. This cell damaging process plays a critical role in the pathomechanisms of myocardial infarction (MI) and post-infarction heart failure (HF). Accordingly, it has been documented that the modulation of key molecules of the canonical signaling pathway of necroptosis, involving receptor-interacting protein kinases (RIP1 and RIP3) as well as mixed lineage kinase domain-like pseudokinase (MLKL), elicit cardioprotective effects. This is evidenced by the reduction of the MI-induced infarct size, alleviation of myocardial dysfunction, and adverse cardiac remodeling. In addition to this molecular signaling of necroptosis, the non-canonical pathway, involving Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-mediated regulation of mitochondrial permeability transition pore (mPTP) opening, and phosphoglycerate mutase 5 (PGAM5)–dynamin-related protein 1 (Drp-1)-induced mitochondrial fission, has recently been linked to ischemic heart injury. Since MI and HF are characterized by an imbalance between reactive oxygen species production and degradation as well as the occurrence of necroptosis in the heart, it is likely that oxidative stress (OS) may be involved in the mechanisms of this cell death program for inducing cardiac damage. In this review, therefore, several observations from different studies are presented to support this paradigm linking cardiac OS, the canonical and non-canonical pathways of necroptosis, and ischemia-induced injury. It is concluded that a multiple therapeutic approach targeting some specific changes in OS and necroptosis may be beneficial in improving the treatment of ischemic heart disease

    Incremental algorithm for association rule mining under dynamic threshold

    Get PDF
    © 2019 The Authors. Published by MDPI AG. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/app9245398Data mining is essentially applied to discover new knowledge from a database through an iterative process. The mining process may be time consuming for massive datasets. A widely used method related to knowledge discovery domain refers to association rule mining (ARM) approach, despite its shortcomings in mining large databases. As such, several approaches have been prescribed to unravel knowledge. Most of the proposed algorithms addressed data incremental issues, especially when a hefty amount of data are added to the database after the latest mining process. Three basic manipulation operations performed in a database include add, delete, and update. Any method devised in light of data incremental issues is bound to embed these three operations. The changing threshold is a long-standing problem within the data mining field. Since decision making refers to an active process, the threshold is indeed changeable. Accordingly, the present study proposes an algorithm that resolves the issue of rescanning a database that had been mined previously and allows retrieval of knowledge that satisfies several thresholds without the need to learn the process from scratch. The proposed approach displayed high accuracy in experimentation, as well as reduction in processing time by almost two-thirds of the original mining execution time.This research was funded by University Malaya through a postgraduate research grant (PPP) grant number PG106-2015B.Published onlin

    Cardiac Phosphoproteomics during Remote Ischemic Preconditioning: A Role for the Sarcomeric Z-Disk Proteins

    Get PDF
    Remote ischemic preconditioning (RIPC) induced by brief ischemia/reperfusion cycles of remote organ (e.g., limb) is cardioprotective. The myocardial cellular changes during RIPC responsible for this phenomenon are not currently known. The aim of this work was to identify the activation by phosphorylation of cardiac proteins following RIPC. To achieve our aim we used isobaric tandem mass tagging (TMT) and reverse phase nanoliquid chromatography tandem spectrometry using a Linear Trap Quadropole (LTQ) Orbitrap Velos mass spectrometer. Male C57/Bl6 mice were anesthetized by an intraperitoneal injection of Tribromoethanol. A cuff was placed around the hind limb and inflated at 200 mmHg to prevent blood flow as confirmed by Laser Doppler Flowmetry. RIPC was induced by 4 cycles of 5 min of limb ischemia followed by 5 min of reperfusion. Hearts were extracted for phosphoproteomics. We identified approximately 30 phosphoproteins that were differentially expressed in response to RIPC protocol. The levels of several phosphoproteins in the Z-disk of the sarcomere including phospho-myozenin-2 were significantly higher than control. This study describes and validates a novel approach to monitor the changes in the cardiac phosphoproteome following the cardioprotective intervention of RIPC and prior to index ischemia. The increased level of phosphorylated sarcomeric proteins suggests they may have a role in cardiac signaling during RIPC

    Changes in contractile protein expression are linked to ventricular stiffness in infants with pulmonary hypertension or right ventricular hypertrophy due to congenital heart disease

    Get PDF
    Background The right ventricle (RV) is not designed to sustain high pressure leading to failure. There are no current medications to help RV contraction, so further information is required on adaption of the RV to such hypertension. Methods The Right Ventricle in Children (RVENCH) study assessed infants with congenital heart disease undergoing cardiac surgery with hypertensive RV. Clinical and echocardiographic data were recorded, and samples of RV were taken from matched infants, analysed for proteomics and compared between pathologies and with clinical and echocardiographic outcome data. Results Those with tetralogy of Fallot (TOF) were significantly more cyanosed than those with ventricular septal defect (median oxygen saturation 83% vs 98%, P=0.0038), had significantly stiffer RV (tricuspid E wave/A wave ratio 1.95 vs 0.84, P=0.009) and had most had restrictive physiology. Gene ontology in TOF, with enrichment analysis, demonstrated significant increase in proteins of contractile mechanisms and those of calmodulin, actin binding and others associated with contractility than inventricular septal defect. Structural proteins were also found to be higher in association with sarcomeric function: Z-disc, M-Band and thin-filament proteins. Remaining proteins associated with actin binding, calcium signalling and myocyte cytoskeletal development. Phosphopeptide enrichment led to higher levels of calcium signalling proteins in TOF. Conclusion This is the first demonstration that those with an RV, which is stiff and hypertensive in TOF, have a range of altered proteins, often in calcium signalling pathways. Information about these alterations might guide treatment options both in terms of individualised therapy or inotropic support for the Right ventricle when hypertensive due to pulmoanry hypertension or congenital heart disease

    Pathology-related changes in cardiac energy metabolites, inflammatory response and reperfusion injury following cardioplegic arrest in patients undergoing open-heart surgery

    Get PDF
    IntroductionChanges in cardiac metabolites in adult patients undergoing open-heart surgery using ischemic cardioplegic arrest have largely been reported for non-ventricular tissue or diseased left ventricular tissue, with few studies attempting to assess such changes in both ventricular chambers. It is also unknown whether such changes are altered in different pathologies or linked to the degree of reperfusion injury and inflammatory response. The aim of the present work was to address these issues by monitoring myocardial metabolites in both ventricles and to establish whether these changes are linked to reperfusion injury and inflammatory/stress response in patients undergoing surgery using cold blood cardioplegia for either coronary artery bypass graft (CABG, n = 25) or aortic valve replacement (AVR, n = 16).MethodsVentricular biopsies from both left (LV) and right (RV) ventricles were collected before ischemic cardioplegic arrest and 20 min after reperfusion. The biopsies were processed for measuring selected metabolites (adenine nucleotides, purines, and amino acids) using HPLC. Blood markers of cardiac injury (Troponin I, cTnI), inflammation (IL- 6, IL-8, Il-10, and TNFα, measured using Multiplex) and oxidative stress (Myeloperoxidase, MPO) were measured pre- and up to 72 hours post-operatively.ResultsThe CABG group had a significantly shorter ischemic cardioplegic arrest time (38.6 ± 2.3 min) compared to AVR group (63.0 ± 4.9 min, p = 2 x 10−6). Cardiac injury (cTnI release) was similar for both CABG and AVR groups. The inflammatory markers IL-6 and Il-8 were significantly higher in CABG patients compared to AVR patients. Metabolic markers of cardiac ischemic stress were relatively and significantly more altered in the LV of CABG patients. Comparing diabetic and non-diabetic CABG patients shows that only the RV of diabetic patients sustained major ischemic stress during reperfusion and that diabetic patients had a significantly higher inflammatory response.DiscussionCABG patients sustain relatively more ischemic stress, systemic inflammatory response and similar injury and oxidative stress compared to AVR patients despite having significantly shorter cross-clamp time. The higher inflammatory response in CABG patients appears to be at least partly driven by a higher incidence of diabetes amongst CABG patients. In addition to pathology, the use of cold blood cardioplegic arrest may underlie these differences

    Changes in contractile protein expression are linked to ventricular stiffness in infants with pulmonary hypertension or right ventricular hypertrophy due to congenital heart disease

    Get PDF
    Background The right ventricle (RV) is not designed to sustain high pressure leading to failure. There are no current medications to help RV contraction, so further information is required on adaption of the RV to such hypertension. Methods The Right Ventricle in Children (RVENCH) study assessed infants with congenital heart disease undergoing cardiac surgery with hypertensive RV. Clinical and echocardiographic data were recorded, and samples of RV were taken from matched infants, analysed for proteomics and compared between pathologies and with clinical and echocardiographic outcome data. Results Those with tetralogy of Fallot (TOF) were significantly more cyanosed than those with ventricular septal defect (median oxygen saturation 83% vs 98%, P=0.0038), had significantly stiffer RV (tricuspid E wave/A wave ratio 1.95 vs 0.84, P=0.009) and had most had restrictive physiology. Gene ontology in TOF, with enrichment analysis, demonstrated significant increase in proteins of contractile mechanisms and those of calmodulin, actin binding and others associated with contractility than inventricular septal defect. Structural proteins were also found to be higher in association with sarcomeric function: Z-disc, M-Band and thin-filament proteins. Remaining proteins associated with actin binding, calcium signalling and myocyte cytoskeletal development. Phosphopeptide enrichment led to higher levels of calcium signalling proteins in TOF. Conclusion This is the first demonstration that those with an RV, which is stiff and hypertensive in TOF, have a range of altered proteins, often in calcium signalling pathways. Information about these alterations might guide treatment options both in terms of individualised therapy or inotropic support for the Right ventricle when hypertensive due to pulmoanry hypertension or congenital heart disease
    corecore