4 research outputs found

    Food Chemistry

    No full text
    Propolis has many benefits for human health. To facilitate its oral consumption, we designed propolis-in-water dispersions to be used as nutraceuticals. Propolis was first dissolved either in ethanol or in a hydroalcoholic solution. Water being a non-solvent for propolis, its addition produced propolis precipitation. We explored the ternary phase diagram of water, propolis and ethanol to identify the line separating the one phase region where propolis is fully dissolved, and the two-phase region where a concentrated propolis solution coexists with a dilute one. Droplets rich in propolis were produced during the phase separation process under mechanical stirring induced by a rotor–stator device or a microfluidizer, and they were stabilized using gum Arabic as an emulsifier. Ethanol was finally removed by distillation under reduced pressure. Propolis dispersions in the micron and submicron size range could be obtained. They contained between 1.75 and 10.5 wt% polyphenols relative to the total mass

    Hydroxytyrosol encapsulated in biocompatible water-in-oil microemulsions: How the structure affects in vitro absorption

    No full text
    Over the last years, the incorporation of natural antioxidants in food and pharmaceutical formulations has gained attention, delaying or preventing oxidation phenomena in the final products. In order to take full advantage of their properties, protection in special microenvironments is of great importance. The unique features of the natural phenolic compound hydroxytyrosol (HT) - including antioxidant, anti-inflammatory, antiproliferative and cardioprotective properties - have been studied to clarify its mechanism of action. In the present study novel biocompatible water-in-oil (W/O) microemulsions were developed as hosts for HT and subsequently examined for their absorption profile following their oral uptake. The absorption of HT in solution was compared with the encapsulated one in vitro, using a coculture model (Caco-2/TC7 and HT29-MTX cell lines). The systems were structurally characterized by means of Dynamic Light Scattering (DLS) and Electron Paramagnetic Resonance (EPR) techniques. The diameter of the micelles remained unaltered after the incorporation of 678 ppm of HT but the interfacial properties were slightly affected, indicating the involvement of the HT molecules in the surfactant monolayer. EPR was used towards a lipophilic stable free radial, namely galvinoxyl, indicating a high scavenging activity of the systems and encapsulated HT. Finally, after the biocompatibility study of the microemulsions the intestinal absorption of the encapsulated HT was compared with its aqueous solution in vitro. The higher the surfactants' concentration in the system the lower the HT concentration that penetrated the constructed epithelium, indicating the involvement of the amphiphiles in the antioxidant's absorption and its entrapment in the mucus layer
    corecore