22 research outputs found

    Evolutionary Analysis of the Bacillus subtilis Genome Reveals New Genes Involved in Sporulation

    Get PDF
    Bacilli can form dormant, highly resistant, and metabolically inactive spores to cope with extreme environmental challenges. In this study, we examined the evolutionary age of Bacillus subtilis sporulation genes using the approach known as genomic phylostratigraphy. We found that B. subtilis sporulation genes cluster in several groups that emerged at distant evolutionary time-points, suggesting that the sporulation process underwent several stages of expansion. Next, we asked whether such evolutionary stratification of the genome could be used to predict involvement in sporulation of presently uncharacterized genes (y-genes). We individually inactivated a representative sample of uncharacterized genes that arose during the same evolutionary periods as the known sporulation genes and tested the resulting strains for sporulation phenotypes. Sporulation was significantly affected in 16 out of 37 (43%) tested strains. In addition to expanding the knowledge base on B. subtilis sporulation, our findings suggest that evolutionary age could be used to help with genome mining

    Low Concentrations of Vitamin C Reduce the Synthesis of Extracellular Polymers and Destabilize Bacterial Biofilms

    Get PDF
    Extracellular polymeric substances (EPS) produced by bacteria form a matrix supporting the complex three-dimensional architecture of biofilms. This EPS matrix is primarily composed of polysaccharides, proteins and extracellular DNA. In addition to supporting the community structure, the EPS matrix protects bacterial biofilms from the environment. Specifically, it shields the bacterial cells inside the biofilm, by preventing antimicrobial agents from getting in contact with them, thereby reducing their killing effect. New strategies for disrupting the formation of the EPS matrix can therefore lead to a more efficient use of existing antimicrobials. Here we examined the mechanism of the known effect of vitamin C (sodium ascorbate) on enhancing the activity of various antibacterial agents. Our quantitative proteomics analysis shows that non-lethal concentrations of vitamin C inhibit bacterial quorum sensing and other regulatory mechanisms underpinning biofilm development. As a result, the EPS biosynthesis in reduced, and especially the polysaccharide component of the matrix is depleted. Once the EPS content is reduced beyond a critical point, bacterial cells get fully exposed to the medium. At this stage, the cells are more susceptible to killing, either by vitamin C-induced oxidative stress as reported here, or by other antimicrobials or treatments

    Enhancing grid-forming converters control in hybrid AC/DC microgrids using bidirectional virtual inertia support

    Get PDF
    This paper presents a new grid-forming strategy for hybrid AC/DC microgrids using bidirectional virtual inertia support designed to address weak grid conditions. The stability of hybrid AC/DC microgrids heavily relies on the AC mains frequency and the DC-link voltage, and deviations in these factors can lead to undesirable outcomes such as load curtailments and power system congestions and blackouts. This paper introduces a unique approach that leverages bidirectional virtual inertia support to enhance the stability and reliability of hybrid AC/DC microgrids under weak grid conditions. The proposed strategy employs virtual inertia as a buffer to mitigate rapid changes in DC-link voltage and AC frequency, thereby enhancing system stability margins. This strategy significantly contributes to a more stable and reliable grid operation by reducing voltage and frequency fluctuations. A standard hybrid AC/DC microgrid configuration is used to implement the bidirectional virtual inertia support, where a bidirectional interlinking converter control is adjusted to deliver inertia support to both the AC and DC subgrids. This converter utilizes the DC grid voltage and AC grid frequency as inputs, effectively managing active power balance and implementing auxiliary functions. Extensive simulations are conducted under weak grid conditions and standalone mode to validate the effectiveness of the proposed strategy. The simulation results demonstrate a remarkable improvement in frequency nadir, rate-of-change-of-frequency (RoCoF), and DC bus voltage deviation in the hybrid AC/DC microgrids. The bidirectional virtual inertia support substantially reduces voltage and frequency fluctuations, enhancing the microgrid stability and resilience. There is an improvement of over 45% and 25% in the frequency deviation and voltage deviation, respectively, achieved through implementing the proposed control strategy

    VaTEST III : validation of 8 potential super-earths from TESS data

    Get PDF
    Funding: The ULiege’s contribution to SPECULOOS has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) (grant Agreement n◦ 336480/SPECULOOS). This research is in part funded by the European Union’s Horizon 2020 research and innovation programme (grants agreements n◦ 803193/BEBOP), and from the Science and Technology Facilities Council (STFC; grant n◦ ST/S00193X/1, and ST/W000385/1).NASA’s all-sky survey mission, the Transiting Exoplanet Survey Satellite (TESS), is specifically engineered to detect exoplanets that transit bright stars. Thus far, TESS has successfully identified approximately 400 transiting exoplanets, in addition to roughly 6 000 candidate exoplanets pending confirmation. In this study, we present the results of our ongoing project, the Validation of Transiting Exoplanets using Statistical Tools (VaTEST). Our dedicated effort is focused on the confirmation and characterisation of new exoplanets through the application of statistical validation tools. Through a combination of ground-based telescope data, high-resolution imaging, and the utilisation of the statistical validation tool known as TRICERATOPS, we have successfully discovered eight potential super-Earths. These planets bear the designations: TOI-238b (1.61 +0.09−0.10 R ⊕ ), TOI-771b (1.42 +0.11−0.09 R ⊕ ), TOI-871b (1.66 +0.11−0.11 R ⊕ ), TOI-1467b (1.83 +0.16−0.15 R ⊕ ), TOI-1739b (1.69 +0.10−0.08 R ⊕ ), TOI-2068b (1.82 +0.16−0.15 R ⊕ ), TOI-4559b (1.42 +0.13−0.11 R ⊕ ), and TOI-5799b (1.62 +0.19−0.13 R ⊕ ). Among all these planets, six of them fall within the region known as ‘keystone planets’, which makes them particularly interesting for study. Based on the location of TOI-771b and TOI-4559b below the radius valley we characterised them as likely super-Earths, though radial velocity mass measurements for these planets will provide more details about their characterisation. It is noteworthy that planets within the size range investigated herein are absent from our own solar system, making their study crucial for gaining insights into the evolutionary stages between Earth and Neptune.Peer reviewe

    The Magellan-TESS Survey I: Survey Description and Mid-Survey Results

    Get PDF
    One of the most significant revelations from Kepler is that roughly one-third of Sun-like stars host planets which orbit their stars within 100 days and are between the size of Earth and Neptune. How do these super-Earth and sub-Neptune planets form, what are they made of, and do they represent a continuous population or naturally divide into separate groups? Measuring their masses and thus bulk densities can help address these questions of their origin and composition. To that end, we began the Magellan-TESS Survey (MTS), which uses Magellan II/PFS to obtain radial velocity (RV) masses of 30 transiting exoplanets discovered by TESS and develops an analysis framework that connects observed planet distributions to underlying populations. In the past, RV measurements of small planets have been challenging to obtain due to the faintness and low RV semi-amplitudes of most Kepler systems, and challenging to interpret due to the potential biases in the existing ensemble of small planet masses from non-algorithmic decisions for target selection and observation plans. The MTS attempts to minimize these biases by focusing on bright TESS targets and employing a quantitative selection function and multi-year observing strategy. In this paper, we (1) describe the motivation and survey strategy behind the MTS, (2) present our first catalog of planet mass and density constraints for 25 TESS Objects of Interest (TOIs; 20 in our population analysis sample, five that are members of the same systems), and (3) employ a hierarchical Bayesian model to produce preliminary constraints on the mass-radius (M-R) relation. We find qualitative agreement with prior mass-radius relations but some quantitative differences (abridged). The the results of this work can inform more detailed studies of individual systems and offer a framework that can be applied to future RV surveys with the goal of population inferences.Comment: 101 pages (39 of main text and references, the rest an appendix of figures and tables). Submitted to AAS Journal

    Another Shipment of Six Short-Period Giant Planets from TESS

    Get PDF
    We present the discovery and characterization of six short-period, transiting giant planets from NASA's Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), & TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G< 11.8, 7.7 <K< 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program (TFOP) Working Group, we have determined that the planets are Jovian-sized (RP_{P} = 1.00-1.45 RJ_{J}), have masses ranging from 0.92 to 5.35 MJ_{J}, and orbit F, G, and K stars (4753 << Teff_{eff} << 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P = 8.872 days, ee = 0.220±0.0530.220\pm0.053), TOI-2145 b (P = 10.261 days, ee = 0.1820.049+0.0390.182^{+0.039}_{-0.049}), and TOI-2497 b (P = 10.656 days, ee = 0.1960.053+0.0590.196^{+0.059}_{-0.053}). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 << log\log g <<4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; 5.350.35+0.325.35^{+0.32}_{-0.35} MJ_{\rm J} (TOI-2145 b) and 5.21±0.525.21\pm0.52 MJ_{\rm J} (TOI-2497 b). These six new discoveries contribute to the larger community effort to use {\it TESS} to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies.Comment: 20 Pages, 6 Figures, 8 Tables, Accepted by MNRA

    TESS discovery of a sub-Neptune orbiting a mid-M dwarf TOI-2136

    Full text link
    peer reviewedWe present the discovery of TOI-2136b, a sub-Neptune planet transiting every 7.85 days a nearby M4.5V-type star, identified through photometric measurements from the TESS mission. The host star is located 3333 pc away with a radius of R=0.34±0.02 RR_{\ast} = 0.34\pm0.02\ R_{\odot}, a mass of 0.34±0.02 M0.34\pm0.02\ M_{\odot} and an effective temperature of 3342±100 K\rm 3342\pm100\ K. We estimate its stellar rotation period to be 75±575\pm5 days based on archival long-term photometry. We confirm and characterize the planet based on a series of ground-based multi-wavelength photometry, high-angular-resolution imaging observations, and precise radial velocities from CFHT/SPIRou. Our joint analysis reveals that the planet has a radius of 2.19±0.17 R2.19\pm0.17\ R_{\oplus}, and a mass measurement of $6.4\pm2.4\ M_{\oplus}$. The mass and radius of TOI2136b is consistent with a broad range of compositions, from water-ice to gas-dominated worlds. TOI-2136b falls close to the radius valley for low-mass stars predicted by the thermally driven atmospheric mass loss models, making it an interesting target for future studies of its interior structure and atmospheric properties

    Coupled radiation and double diffusive convection in nongray Air-CO2 and Air-H2O mixtures in cooperating situations

    No full text
    This study highlights the interaction between gas radiation and double diffusive convection in cooperating cases. We consider a square differentially-heated cavity filled with nongray air-CO2 or air-H2O mixtures. The governing equations are solved by a finite-difference method. The radiative sources are evaluated by the discrete ordinates method associated to the SLW spectral model. Results obtained for two average concentrations of CO2 and H2O (10% and 25%) show that radiation influences the temperature and concentration fields by creating oblique stratifications. The Nusselt numbers are decreased, whereas the Sherwood numbers are only slightly reduced. These effects are accentuated in air-H2O mixture

    Numerical study of double-diffusion convection coupled to radiation in a square cavity filled with a participating grey gas

    No full text
    This paper presents numerical solutions for the coupled radiation and natural convection heat transfer by double diffusion in a square cavity. The governing differential equations are solved by a finite-volume method, by adopting the SIMPLER algorithm for pressure–velocity coupling. The discrete ordinate method is used in modelling the radiative transfer equation. The working fluid is considered as grey, absorbing, emitting and not scattering. The walls of the enclosure are assumed to be opaque, diffuse and grey. A parametric study is performed to illustrate the influence of the Rayleigh number, the buoyancy number, the Lewis number and the optical thickness on the flow structure, the heat and mass transfer. The results obtained can be used as benchmark solutions for the validation of the codes treating the combined natural convection heat transfer by double diffusion and radiatio
    corecore