48 research outputs found

    Insights into the bacterial communities of Nile tilapia – core members and intergenerational transfer

    Get PDF
    Doctoral thesis (PhD) – Nord University, 2022publishedVersio

    Intergenerational transfer of persistent bacterial communities in female Nile tilapia

    Get PDF
    5openInternationalInternational coauthor/editorResident microbial communities that can support various host functions play a key role in their development and health. In fishes, microbial symbionts are vertically transferred from the parents to their progeny. Such transfer of microbes in mouthbrooder fish species has not been reported yet. Here, we employed Nile tilapia (Oreochromis niloticus) to investigate the vertical transmission of microbes across generations using a 16S rRNA amplicon sequencing approach, based on the presence of bacteria in different generations. Our analysis revealed that the core microbiome in the buccal cavity and posterior intestine of parents shapes the gut microbiome of the progeny across generations. We speculate that the route of this transmission is via the buccal cavity. The identified core microbiome bacteria, namely Nocardioides, Propionibacterium, and Sphingomonas have been reported to play an essential role in the health and development of offspring. These core microbiome members could have specific functions in fish, similar to mammals.openAbdelhafiz, Yousri; Fernandes, Jorge M. O.; Donati, Claudio; Pindo, Massimo; Kiron, ViswanathAbdelhafiz, Y.; Fernandes, J.M.O.; Donati, C.; Pindo, M.; Kiron, V

    Prediction of insect pest distribution as influenced by elevation: Combining field observations and temperature-dependent development models for the coffee stink bug, Antestiopsis thunbergii (Gmelin)

    Get PDF
    The antestia bug, Antestiopsis thunbergii (Gmelin 1790) is a major pest of Arabica coffee in Africa. The bug prefers coffee at the highest elevations, contrary to other major pests. The objectives of this study were to describe the relationship between A. thunbergii populations and elevation, to elucidate this relationship using our knowledge of the pest thermal biology and to predict the pest distribution under climate warming. Antestiopsis thunbergii population density was assessed in 24 coffee farms located along a transect delimited across an elevation gradient in the range 1000–1700 m asl, on Mt. Kilimanjaro, Tanzania. Density was assessed for three different climatic seasons, the cool dry season in June 2014 and 2015, the short rainy season in October 2014 and the warm dry season in January 2015. The pest distribution was predicted over the same transect using three risk indices: the establishment risk index (ERI), the generation index (GI) and the activity index (AI). These indices were computed using simulated life table parameters obtained from temperature-dependent development models and temperature data from 1) field records using data loggers deployed over the transect and 2) predictions for year 2055 extracted from AFRICLIM database. The observed population density was the highest during the cool dry season and increased significantly with increasing elevation. For current temperature, the ERI increased with an increase in elevation and was therefore distributed similarly to observed populations, contrary to the other indices. This result suggests that immature stage susceptibility to extreme temperatures was a key factor of population distribution as impacted by elevation. In the future, distribution of the risk indices globally indicated a decrease of the risk at low elevation and an increase of the risk at the highest elevations. Based on these results, we concluded with recommendations to mitigate the risk of A. thunbergii infestation

    Macroalga-derived alginate oligosaccharide alters intestinal bacteria of atlantic salmon

    Get PDF
    Prebiotics are substrates intended to sculpt gut microbial communities as they are selectively utilized by the microorganisms to exert beneficial health effects on hosts. Macroalga-derived oligosaccharides are candidate prebiotics, and herein, we determined the effects of Laminaria sp.-derived alginate oligosaccharide (AlgOS) on the distal intestinal microbiota of Atlantic salmon (Salmo salar). Using a high-throughput 16S rRNA gene amplicon sequencing technique, we investigated the microbiota harbored in the intestinal content and mucus of the fish offered feeds supplemented with 0.5 and 2.5% AlgOS. We found that the prebiotic shifts the intestinal microbiota profile; alpha diversity was significantly reduced with 2.5% AlgOS while with 0.5% AlgOS the alteration occurred without impacting the bacterial diversity. Beta diversity analysis indicated the significant differences between control and prebiotic-fed groups. The low supplementation level of AlgOS facilitated the dominance of Proteobacteria (including Photobacterium phosphoreum, Aquabacterium parvum, Achromobacter insolitus), and Spirochaetes (Brevinema andersonii) in the content or mucus of the fish, and few of these bacteria (Aliivibrio logei, A. parvum, B. andersonii, A. insolitus) have genes associated with butyrate production. The results indicate that the low inclusion of AlgOS can plausibly induce a prebiotic effect on the distal intestinal microbiota of Atlantic salmon. These findings can generate further interest in the potential of macroalgae-derived oligosaccharides for food and feed applications.publishedVersio

    Predicting the habitat suitability and distribution of two species of mound-building termites in Nigeria using bioclimatic and vegetation variables

    Get PDF
    Temperature is an important factor determining the abundance, distribution and diversity of termite species. Thus, termites are affected by changing climate and have to adopt different means of surviving in order to avoid extinction. Using termite occurrence data, bioclimatic variables and vegetation cover, we modelled and predicted the current and future habitat suitability for mound-building termites in Nigeria. Of the 19 bioclimatic variables and the vegetation index (NDVI) tested, only six were significant and eligible as predictors of habitat suitability for the mound-building termites Macrotermes subhyalinus and M. bellicosus. Under current climatic conditions (2022), the northwest, northeast and central regions are highly suitable for M. subhyalinus, while the distribution of M. bellicosus decreased in the North West, North East and in the Central region. However, regarding habitat suitability for the future (2050), there was a predicted range expansion into suitable areas for the two termite species. The increase in temperature due to global warming has an effect which can either result in migration or sometimes extinction of termite species within an ecosystem. Here, we have predicted habitat suitability for the two mound-building termite species under current and future climatic scenarios, and how the change in climatic variables would lead to an expansion in their range across Nigeria.The University of Pretoria, The South African National Research Foundation (NRF) Incentive Funding for Rated Researchers (IFRR), Y-Rated Research Grant, PI grant from South African Research Chair in Mathematical Methods in Bioengineering and Biosciences (M2B3), Alexander von Humboldt’s Georg Foster HERMES Experienced Research Fellowship, a University of Pretoria Postgraduate Bursary and the Nigerian Tertiary Education Trust Fund (TETFund).https://www.mdpi.com/journal/diversityhj2023Zoology and Entomolog

    Integrating temperature-dependent life table data into insect life cycle model for predicting the potential distribution of Scapsipedus icipe Hugel & Tanga

    Get PDF
    A new edible cricket species from Kenya of the genus Scapsipedus (Scapsipedus icipe Hugel & Tanga) is described through this study. Temperature-dependent development, survival, reproductive and life table parameters of S. icipe was generated and integrated into advanced Insect Life Cycle Modeling software to describe relative S. icipe population increase and spatial spread based on nine constant temperature conditions. Findings provide first-time important information on the impact of temperature on the biology, establishment and spread of S. icipe across the Africa continent. The prospect of edible S. icipe production to become a new sector in food and feed industry is discussed.GREENiNSECT of DanidaNetherlands Organization for Scientific ResearchWOTRO Science for Global Development (NWO-WOTRO)Federal Ministry for Economic Cooperation and DevelopmentAustralian Centre for International Agricultural Research (ACIAR)BioInnovate Africa Programm

    Integrating temperature-dependent life table data into Insect Life Cycle Model for predicting the potential distribution of <em>Scapsipedus icipe</em> Hugel &amp; Tanga

    Get PDF
    Scapsipedus icipe Hugel and Tanga (Orthoptera: Gryllidae) is a newly described edible cricket species. Although, there is substantial interest in mass production of S. icipe for human food and animal feed, no information exists on the impact of temperature on their bionomics. Temperature-dependent development, survival, reproductive and life table parameters of S. icipe was generated and integrated into advanced Insect Life Cycle Modeling software to describe relative S. icipe population increase and spatial spread based on nine constant temperature conditions. We examined model predictions and implications for S. icipe potential distribution in Africa under current and future climate. These regions where entomophagy is widely practiced have distinctly different climates. Our results showed that S. icipe eggs were unable to hatch at 10 and 40°C, while emerged nymphs failed to complete development at 15°C. The developmental time of S. icipe was observed to decrease with increased in temperature. The lowest developmental threshold temperatures estimated using linear regressions was 14.3, 12.67 and 19.12°C and the thermal constants for development were 185.2, 1111.1- and 40.7-degree days (DD) for egg, nymph and pre-adult stages, respectively. The highest total fecundity (3416 individuals/female/generation), intrinsic rate of natural increase (0.075 days), net reproductive rate (1330.8 female/female/generation) and shortest doubling time (9.2 days) was recorded at 30°C. The regions predicted to be suitable by the model suggest that S. icipe is tolerant to a wider range of climatic conditions. Our findings provide for the first-time important information on the impact of temperature on the biology, establishment and spread of S. icipe across the Africa continent. The prospect of edible S. icipe production to become a new sector in food and feed industry is discussed
    corecore