415 research outputs found

    Stochastic Processes in Yellow and Red Pulsating Variables

    Full text link
    Random changes in pulsation period are well established in cool pulsating stars, in particular the red giant variables: Miras, semi-regulars of types A and B, and RV Tau variables. Such effects are also observed in a handful of Cepheids, the SX Phe variable XX Cyg, and, most recently, the red supergiant variable, BC Cyg, a type C semi-regular. The nature of such fluctuations is seemingly random over a few pulsation cycles of the stars, yet the regularity of the primary pulsation mechanism dominates over the long term. The degree of stochasticity is linked to the dimensions of the stars, the randomness parameter 'e' appearing to correlate closely with mean stellar radius through the period 'P', with an average value of e/P = 0.0136+-0.0005. The physical processes responsible for such fluctuations are uncertain, but presumably originate in temporal modifications of envelope convection in such stars.Comment: Poster given at the "Stellar Pulsation: Challenges for Theory and Observation" conference in Santa Fe, New Mexico (2009

    Rate of Period Change as a Diagnostic of Cepheid Properties

    Full text link
    Rate of period change P˙\dot{P} for a Cepheid is shown to be a parameter that is capable of indicating the instability strip crossing mode for individual objects, and, in conjunction with light amplitude, likely location within the instability strip. Observed rates of period change in over 200 Milky Way Cepheids are demonstrated to be in general agreement with predictions from stellar evolutionary models, although the sample also displays features that are inconsistent with some published models and indicative of the importance of additional factors not fully incorporated in models to date.Comment: Published in PASP (March 2006); TeX source & figures now provide

    Affordable dye sensitizer by waste

    Get PDF
    Abstract The development of dye sensitizer is growing in line with the increasing demand for renewable energy. A research to obtain a dye sensitizer that is economical, safe, and produces a great value of DSSC efficiency is a challenge unresolved. On the other hand, the efforts for waste reduction are also intensively conducted to create better environment. In this paper, the variation of synthetic dye wastes from batik industries have been successfully applied as dye sensitizer and fabricated on DSSC cells. Congo red (1.0133%) yielded higher efficiency than rhodamine B (0.0126%), methyl orange (0.7560%), and naphthol blue black (0.0083%). The divergence of the efficiency of DSSC is very dependent upon the chromophore group owned by dye. This study has proven that the more chromophore group possessed by dye, the higher the efficiency of DSSC generated. This research concludes that the dye wastes have a bright future to be implemented as dye sensitizer on solar cells

    The Plasmodium falciparum STEVOR Multigene Family Mediates Antigenic Variation of the Infected Erythrocyte

    Get PDF
    Modifications of the Plasmodium falciparum–infected red blood cell (iRBC) surface have been linked to parasite-associated pathology. Such modifications enable the parasite to establish long-lasting chronic infection by evading antibody mediate immune recognition and splenic clearance. With the exception of the well-demonstrated roles of var-encoded PfEMP1 in virulence and immune evasion, the biological significance of other variant surface antigens (rif and stevor) is largely unknown. While PfEMP1 and RIFIN have been located on the iRBC surface, recent studies have located STEVOR at the iRBC membrane where it may be exposed on the erythrocyte surface. To investigate the role of STEVOR in more detail, we have developed antibodies against two putative STEVOR proteins and used a combination of indirect immunofluorescence assays (IFA), live IFA, flow cytometry, as well as agglutination assays, which enable us to demonstrate that STEVOR is clonally variant at the surface of schizont stage parasites. Crucially, expression of different STEVOR on the surface of the iRBC changes the antigenic property of the parasite. Taken together, our data for the first time demonstrate that STEVOR plays a role in creating antigenic diversity of schizont stage parasites, thereby adding additional complexity to the immunogenic properties of the iRBC. Furthermore, it clearly demonstrates that to obtain a complete understanding of how parasite-induced pathology is linked to variation on the surface of the iRBC, focusing the interactions of multiple multigene families needs to be considered

    Inducible Nitric Oxide Synthase (iNOS) and Nitric Oxide (NO) are Important Mediators of Reflux-induced Cell Signalling in Esophageal Cells

    Get PDF
    Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) has been implicated in both DNA damage induction and aberrant cell signalling in various tissue and cell backgrounds. We investigated here the role of iNOS and NO in DNA damage induction and nuclear factor-kappa B (NF-κB) signalling in esophageal cells in vitro. As esophageal adenocarcinoma develops in a background of Barrett’s esophagus secondary to reflux disease, it is possible that inflammatory mediators like NO may be important in esophageal cancer development. We show that reflux components like stomach acid and bile acids [deoxycholic acid (DCA)] can induce iNOS gene and protein expression and produce NO generation in esophageal cells, using real-time PCR, western blotting and NO sensitive fluorescent probes, respectively. This up-regulation of iNOS expression was not dependent on NF-κB activity. DCA-induced DNA damage was independent of NF-κB and only partially dependent on iNOS and NO, as measured by the micronucleus assay. These same reflux constituents also activated the oncogenic transcription factor NF-κB, as measured by transcription factor enzyme-linked immunosorbent assay and gene expression studies with NF-κB linked genes (e.g. interleukin-8). Importantly, we show here for the first time that basal levels of NF-κB activity (and possibly acid and DCA-induced NF-κB) are dependent on iNOS/NO and this may lead to a positive feedback loop whereby induced iNOS is upstream of NF-κB, hence prolonging and potentially amplifying this signalling, presumably through NO activation of NF-κB. Furthermore, we confirm increased protein levels of iNOS in esophageal adenocarcinoma and, therefore, in neoplastic development in the esophagus

    Circulating Very Small Embryonic-Like Stem Cells in Cardiovascular Disease

    Get PDF
    Very small embryonic-like cells (VSELs) are a population of stem cells residing in the bone marrow (BM) and several organs, which undergo mobilization into peripheral blood (PB) following acute myocardial infarction and stroke. These cells express markers of pluripotent stem cells (PSCs), such as Oct-4, Nanog, and SSEA-1, as well as early cardiac, endothelial, and neural tissue developmental markers. VSELs can be effectively isolated from the BM, umbilical cord blood, and PB. Peripheral blood and BM-derived VSELs can be expanded in co-culture with C2C12 myoblast feeder layer and undergo differentiation into cells from all three germ layers, including cardiomyocytes and vascular endothelial cells. Isolation of VSLEs using fluorescence-activated cell sorting multiparameter live cell sorting system is dependent on gating strategy based on their small size and expression of PSC and absence of hematopoietic lineage markers. VSELs express early cardiac and endothelial lineages markers (GATA-4, Nkx2.5/Csx, VE-cadherin, and von Willebrand factor), SDF-1 chemokine receptor CXCR4, and undergo rapid mobilization in acute MI and ischemic stroke. Experiments in mice showed differentiation of BM-derived VSELs into cardiac myocytes and effectiveness of expanded and pre-differentiated VSLEs in improvement of left ventricular ejection fraction after myocardial infarction

    Proteome Based Construction of the Lymphocyte Function-Associated Antigen 1 (LFA-1) Interactome in Human Dendritic Cells.

    Get PDF
    The β2-integrin lymphocyte function-associated antigen 1 (LFA-1) plays an important role in the migration, adhesion and intercellular communication of dendritic cells (DCs). During the differentiation of human DCs from monocyte precursors, LFA-1 ligand binding capacity is completely lost, even though its expression levels were remained constant. Yet LFA-1-mediated adhesive capacity on DCs can be regained by exposing DCs to the chemokine CCL21, suggesting a high degree of regulation of LFA-1 activity during the course of DC differentiation. The molecular mechanisms underlying this regulation of LFA-1 function in DCs, however, remain elusive. To get more insight we attempted to identify specific LFA-1 binding partners that may play a role in regulating LFA-1 activity in DCs. We used highly sensitive label free quantitative mass-spectrometry to identify proteins co-immunoprecipitated (co-IP) with LFA-1 from ex vivo generated DCs. Among the potential binding partners we identified not only established components of integrin signalling pathways and cytoskeletal proteins, but also several novel LFA-1 binding partners including CD13, galectin-3, thrombospondin-1 and CD44. Further comparison to the LFA-1 interaction partners in monocytes indicated that DC differentiation was accompanied by an overall increase in LFA-1 associated proteins, in particular cytoskeletal, signalling and plasma membrane (PM) proteins. The here presented LFA-1 interactome composed of 78 proteins thus represents a valuable resource of potential regulators of LFA-1 function during the DC lifecycle
    corecore